Solutions for Exercises for TATASS, batch 1, 2019

October 10, 2019

1. (3p) Assuming Bezout (the gcd is a integral linear combination of its arguments) show that a
prime dividing a product divides one of the factors.

Solution:
Suppose that p |ab but p fa. Then ged(p, a) = 1, since p prime, so by Bezout 1 = px + ay.
Thus b = pbx + aby. Since p |ab, we have that p |[RHS, thus p |b.
2. (3p) Find all solutions to
3x + 5y = 999, X,y EZ
with y positive and x even.

Solution: Since 3x2+5x(—1) = 1, a particular solution to the unrestricted Diophantine eqn is
(XpyYp) = (2%999, —1x999) = (1998, —999). The homogeneous soln is (xn, Yyn) = n(-5,3),
N € Z, and thus the general solution is

x = 1998 —5n
y=-999+3n

For x to be even, n has got to be even. For y to be positive we must have that
y=-999+3n >0,
thusn > 222 = 333,
3. (3p) Solve (by hand, though you may check your answer using machines)
x =57 mod 96
x =95 mod 98
Solution:
The first equation gives x = 57 + 96y. Inserted into the second, this gives

574+ 96y =95 mod 98
926y =38 mod 98
48y =19 mod 49

—y =19 mod 49
=—19 mod 49
y =30 mod 49



Soy =30+49n, and x =57 + 96y = 57 + 96(30 +49n) = 2937 4+ 4704n, i.e.,

x = 2937 mod 4704

. (1p+2p) Let X be a finite set, and let ~ be an equivalence relation on X. Let T = {x1,...,xn} be
a transversal, i.e., a choice of exactly one element from each equivalence class.
(a) Define amap N : X — X such that
i. NoN =N, and
ii. x ~yiff N(x) = N(y), and
iii. N(X) =T.
(b) If N : X — X satisfies the first two of the above conditions, need N(X) be a transversal?
Solution:

First, note that the first two conditions imply that

N(x) =N(N(x)) = x~N(x).

The second condition shows that all elements of the same equivalence class must map to the
same element; that element is an element of N(X) = T.

The only way of defining N is thus N(u) = x; if u ~ x;.

If N satisfies just the first two conditions, let S = N(X). If sj,s2 € S then s; = N(t;),
s2 = N(t2),s0 N(s7) = N(N(t1)) = N(t;) = s1, and similarly N(s;) = s,. Hence s7 ~ s iff
s1 = s2, so different s; belong to different equivalence classes.

Suppose, towards a contradiction, that there is some class [u]. containing no element from S.
Then N(u) = sj, with [s;]. # [u]l. But N(N(u)) = N(u) = s; and N(N(u)) = N(s;), so
N(u) = N(s;) which implies that u ~ s;, a contradiction.

Thus, S is a transversal.

. (Ip+3p) Let X = {a, b}, and let X* denote the monoid of all “words” in the letters in X, including
the empty word; the operation is concatenation.

Suppose that u, v are non-empty words in X*.

Show that
uv =vu

if and only if u, v are both powers of some common word, i.e. if there exists a non-empty word
z, and positive integers k, {, such that

As an example, w = abaaba and v = abaabaaba commute.

Solution: : Proof from “Automatic sequences” by Allouche and Shallit included at the end.



6. (3p) Let M be a monoid, and let x € M. Suppose that there exists positive integers 0 < . < m
such that x™ = x™. Show that there are positive integers N, s such that, for all non-negative
integers a, b, it holds that

xNFe—xNTb ey g =b mods

((2p) If you can’t solve this one, give an example of a monoid M and an element x such that
x” = x"1 is the earliest coincidence, and show that for non-negative a, b, x’ 7 = x’*? if and

onlyifa=b mod 4.)

Solution: We actually don’t need M to be a monoid, it is enough that it is a semigroup.

n+1 n-+d-+1 n+d-1 _

First, put d = m — n and note that since x™ = x"*4, n =X , and so on, x
xH2d=1 yntd — nH2d et cetera, so every x! with £ > mis equal to a x* with k < m — 1.
Next, let

] = {j EZ+‘X] ;éxkfork<j},

and form a directed graph with vertex set J, and a directed edge i — j whenever x
Then clearly

1y

(a) ] is finite,
(b) There is a directed path from 1 to any j € ],

(c) Each vertex has out-degree one.

But such a digraph looks like follows:

1 2 3 N—17>N/\

N+s—1 N+1

S

It follows that

are all distinct, and that

repeat with period s.

See also “Fundamentals of semigroup theory” by Howie.
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We now state and prove the second theorem of Lyndon and SChUtZCnberger_
€ nc « «

Theorem 1.5.3 Lerx.V ¢ it Then the following three conditions are equivalep;.
heo vl : |

(1) Xy = yx.
(2) There exist infe
(3) There exist z € ¥ and integers k,

eers i, j > 0 such that = 3,
| > 0suchthatx =z and y = 7'.

Proof. We show that (1) = (3), 3) = (2), and (2) = (1).
(1) = (3): By induction on |xy|. If [xy| = 2, then x| =|yl=1,s0x = y and

wemaytakez =x =y, k=1[= l. .
Now assume the implication is true for all x, y with |xy| < n. We prove it for

xy| = n. Without loss of generality, assume |x| = |y]. Then we have a situation

like the following:

Hence there exists w € £* such that x = wy = yw. If |w| = 0 then x = y and
wecantakez=x =y, k=1=1.

Otherwise [w| > 1. We have |wy| = |x| < |xy| = n, so the induction hypothesis
applies, and there exists z € £ and integers k, ! > 0 such that w = z¥, y = .. Tt
follows that x = wy = zF.

(3) = (2): By (3) there exist z € £ and integers k, [ > 0 such that x = z¥ and
y = 7' Hence, taking i = [, j = k, we get

= (@ =M =@ =Y =y,
as desired.

(2)=.>(1)E Wehave x' = y/.If |x| = |y| then we must have i = [
cherwme, without loss of generality assume |x| > |y|. Then we have a situation
like the following:

’j ¥ x x

W

‘ YUYy |y |y |y

That is, there exists w ¢ ¥+ such that x = yw. Hence xi = (yw) = ¥/, and SO

wyYlw = v/ -
;(g';:)‘ et it "I‘herefore (wy)~'w = yi~1 and so, by multiplying by Y 01 the
W we get (wy)' = y/, Hence (yw) = (wy)', and hence yw = wy. It follo



Particular in;,er%t attaches to the case where A is finite. If A =
{a1,a2,...,a,} then we shall write {A) as {a1,a2,...,a,). Especially in-
teresting is the case where A = {a}, a singleton set, when

(a) = {a,a?,a?,...}.

At this point it is worth pausing to note that if S is a monoid then
we can equally well talk of the submonoid of S generated by S. This will
always contain 1, and in the case of a singleton generator we find that

{a) = {l,a,az,a3,...}.

In what follows, however, it will be sufficient to consider the semigroup
case.

We refer to (a) as the monogenic subsemigroup of $ generated by the
element a. The order of the element a is defined, as in group theory, as the
order of the subsemigroup (a). If S is a semigroup in which there exists an
element a such that S = (a}, then S is said to be a monogenic semigroup.

Clifford and Preston (1961) followed the group-theoretic terminology,
and referred to semigroups with one generator as ‘cyclic’. From what fol-
lows, the reader may judge whether monogenic semigroups are ‘round’
enough to merit the description ‘cyclic.’

Let a be an element of a semigroup S, and consider the monogenic

subsemigroup
{a} = {a,a% a*,...}

enerated by a. If there are no repetitions in the list a,a? a?, ..., that is,
4 v

if

m

am™ =a"

= m=n,

then evidently ((a},.) is isomorphic to the semigroup (N, +) of natural
numbers with respect to addition. In such a case we say that a is an
infinite monogenic semigroup, and that a has infinite order in S.
Suppose now that there are repetitions among the powers of a. Then
the set ‘
{xeN:(IyeN)a® =a¥, z#y}



10 Introductory ideas
is non-empty and so has a least element. Let us denote this least element
by m and call it the indez of the element a. Then the set

{zreN:a™* =a™}
is non-empty, and so it too has a least element r, which we call the period
of a. We shall also refer to m and r as the index and period, respectively,

of the monogenic semigroup (a).
Let a be an element with index m and period 7. Thus

™ =a™t. (1.2.1)
1t follows that
o™ = @™t = q™a" = @™ a" = a™t,
and, more generally, that
. (Vg € N) a™ = a™¥ ",
By the minimality of m and r in (1.2.1) we may deduce that the powers
a,a2,...,a™ a1, el
are all distinct. For every s > m we can, by the division algorithm, write
s=m+qr+u,whereq>0and0Zu<r-1 It then follows that
S am+qrau= a™at = am+u;
thus
{a) = {a,a®,...,a™""'}, and |{a)| =m +7— 1.
We say that a has finite order in this case; the order is given by the rule
order of a = (index of a) + (period of a) — 1.

The subset K, = {a™,a™ + 1,...,a™* "'} of (a) is a subsemigroup,
indeed an ideal, of {a). We call it the kernel of (a), and we shall see in due
course that this use of the word does not conflict with the more general
use of ‘kernel’ in Chapter 3. In fact K, is a subgroup of {a), for if a™**
and a™* are elements of K, then we can find an element a™** in K, for

which
amtugmE — gmir

simply by choosing = so that
z=v—u-m(modr) and 0 <z <r—-1

Indeed K, is a cyclic group. To see this, notice that the integers

m,m+1,...,m+r—1

Monogenic semigroups 11

f?rm a complete set of incongruent residues modulo r. (For this and other
v ber- ideas see, for example, Hardy and Wright
(1979).) It follows that there exists g such that

0<g<r—-1and m+g=1(modr). (1.2.2)

Hence k(m + g) = k (mod r) for every k in N, and so the powers (a™+9)*
of a™*9 for k =1,2,...,r, exhaust K,. Thus K, is a cyclic group of order
r, generated by the element a™¥9.

If we choose z so that

0<z<r—1 and m+2z=0(modr), (1.2.3)

then a™** is idempotent, and so it is the identity of the group K.

Example 1.2.1 Let X = {1,2,...,7}, and consider the element
P 1234567
2345675
of Tx. (The notation for a is an obvious generalization of the standard

notation for permutations: the import is that la = 2,2a =3, ..., 6a =7,
Ta = 5.) It is easy to calculate that

2= 1234567 o8 = 1234567
3456756 )" “\4567567)°

wt_ (1234567 s (1234567
5675675)° ¢ “\6756756)°

S 1234567 o = 1234567
7567567)" T \5675675)"
and so o has index 4 and period 3. The kernel K, is equal to {a%,a®, a%},
and has Cayley table

Thus af is the identity of K, in accord with formula (1.2.3), since 6
0 (mod 3). Also, in accord with formula (1.2.2), since 4 = 1 (mod 3),
suitable generator of the cyclic group K, is 4:

(@¥)? =a® (a%)®=a’.

o Il
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We can visualize (a) as

1 2 3 <
5

It is useful to summarize the resilts in a theorem:

Theorem 1.2.2 Let a be an element of a semigroup S. Then either:

(1) all powers of a are distinet, and the monogenic subsemigroup (a) of
S is isomorphic to the semigroup (N,+) of natural numbers under
addition; or

(2) there exist positive integers m (the index of a) and r (the period of a)
with the following properties:

(a) @™ =a™*";

(b) for all u, v in N°, a™*% = a™* if and only if u = v (mod r);
(c) {a) = {a,a?,...,a™*"1};

(d) K, ={a™ o™t ... ,a™"" "1} is a cyclic subgroup of {a}. 0

Nothing that we have said so far makes it clear that for every pair (m, )
of positive integers there does in fact exist a semigroup S containing an
element a of index m and period r. This, however, is the case: it is a
routine matter to verify that the element

_(123... m m+l..m+r—1m+r
=\ 234.. . m+1m+2... m4r m+1

of the semigroup 7(; 2 ... m+,} has index m and period r.

It is easy to see that if @ and b are elements of finite order in the same or
in different semigroups, then {a) ~ (b} if and only if @ and b have the same
index and period. The conclusion is that for each (m,r) in N x N there
is, up to isomorphism, exactly one monogenic semigroup with index m and
period . We shall feel free to talk of the monogenic semigroup M(m,r)
with index m and period r. Notice that M(1,r) is the cyclic group of

Avdne -



