
Transform theory 2023-06-03 – Solutions

1. (a) No. Note that u(−t) is undefined if t > 0. Or if we extend u(t) = 0 for t < 0,
then L(u(−t)) = 0 ̸= U(−s) in general.

(b) Yes. We have ∥F u∥∞ ≤ ∥u∥L1(R), so choose C = ∥u∥L1(R).

(c) No. The function U is discontinuous at ω = 0.

(d) No. Note that u(−π) = −π/2 ̸= π/2 = u(π), so the periodic extension of u is
discontinuous. The convergence of the Fourier series can not be uniform on R.

(e) No. The function u is not exponentially bounded. Indeed, for example using the
root-test, we find that R = ∞ so the series is divergent for all z.

Answer: No, Yes, No, No, No.

2. We take the Z transform of the equation and find that

z2U(z)− z2u[0]− zu[1]− U(z) =
4z

z + 1
,

where we assume that (at least) |z| > 1. Reformulating this equation, we find that

U(z)
(
z2 − 1

)
= z2 + z +

4z

z + 1
⇔

U(z) =
z2 + z

z2 − 1
+

4z

(z + 1)(z2 − 1)

=
z

z − 1
+

4z

(z + 1)2(z − 1)
.

We decompose into partial fractions:

U(z) =
z

z − 1
+ z

(
−2

(z + 1)2
+

1

z − 1
− 1

z + 1

)
=

2z

z − 1
− z

z + 1
− 2z

(z + 1)2
.

From a table:

Z (1) =
z

z − 1
, Z

(
(−1)k

)
=

z

z + 1
, Z

(
k(−1)k

)
=

−z

(z + 1)2
.

By linearity and uniqueness, we therefore find that

u[k] = 2− (−1)k + 2k(−1)k = 2− (−1)k + 2k(−1)k, k = 0, 1, 2, . . .

Answer: u[k] = 2− (−1)k + 2k(−1)k, k = 0, 1, 2, 3, . . .

3. Clearly u ∈ E. This is clear since the function is piecewise “linear.” It is also clear
that D±u(x) exists at all points. Moreover, u is continuous on R (u is continuous
on [−π, π], u(−π) = u(π) and u is periodically extended). Hence – by Dirichlet’s theorem –
the Fourier series of u is convergent and converges to u(x) for all x ∈ R. Moreover, u′ ∈ E
(u′ is piecewise constant), and therefore the convergence of the Fourier series is uniform
on R. We sketch the function below.
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Since u is an even function, bk = 0 for k = 1, 2, . . . For k ≥ 1, we find (using the fact
that u and cos kx are even functions)

ak =
1

π

∫ π

−π

u(x) cos kx dx =
1

π

∫ 1

−1

(1− |x|) cos kx dx =
2

π

∫ 1

0

(1− x) cos kx dx

=
2

π

([
(1− x)

sin kx

k

]1
0

+

∫ 1

0

sin kx

k
dx

)
=

2

π

[
− cos kx

k2

]1
0

=
2(1− cos k)

πk2

and

a0 =
1

π

∫ 1

−1

(1− |x|) dx =
1

π
.

Hence

u(x) ∼ 1

2π
+

2

π

∞∑
k=1

1− cos k

k2
cos kx =: S(x).

By the argument above, the Fourier series S(x) converges to u(x), so S(x) = u(x) for
all x ∈ R. In particular, we can let x = 0 to find that

1 = u(0) =
1

2π
+

2

π

∞∑
k=1

1− cos k

k2
⇔ 1− 1

2π
=

2

π

∞∑
k=1

1− cos k

k2

⇔ 2

π

∞∑
k=1

1− cos k

k2
= 1− 1

2π

⇔
∞∑
k=1

1− cos k

k2
=

π

2

(
1− 1

2π

)
=

π

2
− 1

4
,

which was what we wanted to prove.

Answer: u(x) ∼ 1

2π
+

2

π

∞∑
k=1

1− cos k

k2
cos kx; see above.

4. The left-hand side is a convolution of f with the function t 7→ 1
t2+4

. The right-hand side is

a translation of the function t 7→ 1
t2+25

. Taking the Fourier transform of the equation, we
obtain that

F (ω)
π

2
e−2|ω| = eiω

π

5
e−5|ω| ⇔ F (ω) = eiω

2

5
e−3|ω| = eiω

6

5π

π

3
e−3|ω|.
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Since F((t2 + 9)−1) =
π

3
e−3|ω|, it follows from the translation property that

F
(

1

(t+ 1)2 + 9

)
= eiω

π

3
e−3|ω|.

Therefore we have found

f(t) =
6

5π

1

(t+ 1)2 + 9
, t ∈ R.

It is clear that f ∈ G(R).

Answer: f(t) =
6

5π

1

(t+ 1)2 + 9
.

5. (a) We observe that u ∈ G(R) and sketch the graph below.

x

y
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Hence the Fourier transform exists and by definition (if ω ̸= 0)

U(ω) =

∫ ∞

−∞
u(x)e−iωx dx =

∫ 3

−3

e−iωx dx =

[
e−ixω

−iω

]x=3

x=−3

=
ei3ω − e−i3ω

iω
=

2 sin 3ω

ω
.

At ω = 0, we can either use the continuity of U to define U(0) or calculate directly:

U(0) =

∫ ∞

−∞
u(x)e−ix dx =

∫ 3

−3

dx = 6.

(b) First, we note that
sin 3ω

ω
is

1

2
U(ω) and that D±u(x) exists for all x, so by Dirichlet’s

theorem, we find that

lim
t→∞

∫ t

−t

1

2
U(ω)eiωx dω =

2π

2
· u(x

+) + u(x−)

2
=


π, |3| < π,

π · (0 + 1)/2 =
π

2
, x = ±3,

0, |x| > 3.

x
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π
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(c) We use the substitution t = 3ω and then Parseval’s identity to find that∫ ∞

−∞

(
sinω

ω

)2

dω =
1

4

∫ ∞

−∞

(
2 sin 3t

3t

)2

3 dt =
1

12

∫ ∞

−∞
|U(t)|2 dt

=
2π

12

∫ ∞

−∞
|u(x)|2 dx =

π

6

∫ 3

−3

1 dx = π.

Answer: (a) U(ω) =


2 sin(3ω)

ω
, ω ̸= 0,

6, ω = 0;
(b)


2π, |x| < 3,

π, x = ±3,

0, |ξ| > 3;

(c) π.

6. (a) We have a periodic function with T = 2 so

Lu(s) =
1

1− e−2s

∫ 2

0

u(t)e−st dt =
1

1− e−2s

(∫ 1

0

−e−st dt+

∫ 2

1

e−st dt

)
=

1

1− e−2s

([
−e−st

−s

]1
0

+

[
e−st

−s

]2
1

)
=

1

1− e−2s

(
e−s − 1

s
+

−e−2s + e−s

s

)

=
e−2s − 2e−s + 1

s(e−2s − 1)
=

(
e−s − 1

)2
s(e−2s − 1)

, Re s > 0.

(b) We see that, if U(s) = Lu(s) with Re s > b, then

L(u(at))(s) =
∫ ∞

0

u(at)e−st dt = / y = at / =

∫ ∞

0

u(y)e−sy/a dy

a

=
1

a

∫ ∞

0

u(y)e−(s/a)y dy =
1

a
Lu
(s
a

)
, Re s > ab.

Answer: (a)

(
e−s − 1

)2
s(e−2s − 1)

(b) see above.

7. Let uk(x) =
1

3x4 + 5k4
. Clearly

|uk(x)| ≤
1

k4
, k = 1, 2, 3, . . .

so the series defining u(x) is convergent for all x (actually uniformly convergent by the
M-test). To show that u(x) is differentiably, we prove the uniform convergence of the
series

∞∑
k=1

u′
k(x) =

∞∑
k=1

−12x3

(3x4 + 5k4)2
.

Clearly u′
k(x) → 0 as x → ±∞ and

u′′
k(x) =

180x2(x4 − k4)

(3x4 + k4)3
⇒

[
u′′
k(x) = 0 ⇔ x4 = k4 or x = 0

]
so u′′

k(x) = 0 if x = ±k or k = 0. Clearly u′′
k(0) = 0 and therefore the maximum of |u′

k(x)|
is found at x = ±k. Thus

|u′
k(x)| ≤ |u′

k(±k)| = 12k3

(8k4)2
=

3

16k5
.
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Since
∞∑
k=1

1

k5
< ∞, the M-test proves that v(x) =

∞∑
k=1

u′
k(x) is uniformly convergent.

Moreover, u′
k are continuous for k = 1, 2, 3, . . ., so v is a continuous function (by the uniform

convergence). This is sufficient for claiming that u is differentiable with u′(x) = v(x) for
all x. Thus u ∈ C1.

Answer: see above.
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