
Transform theory 2023-08-17 – Solutions

1. (a) Yes. Since z(U(z)− u[0]) = z

∞∑
k=1

u[k]z−k =
∞∑
k=0

u[k + 1]z−k, we see that if |z| → ∞

then this expression tends to u[1] by the initial value theorem.

(b) Yes. The partial sums are obviously continuous functions so if the convergence is
uniform, then the Fourier series converges to something that must be continuous.

(c) No. For instance u(x) = H(x+ 1)−H(x− 1) has the transform 2 sincω which does
not belong to L1(R).

(d) Nope. The function is discontinuous at x = −3 and x = 2, which is not possible for
a Fourier transform of a function from G (which is uniformly continuous).

(e) No, this is impossible. The exponent t2 grows too fast (can’t be bounded by kt for
any k > 0).

Answer: Yes. Yes. No. No. No.

2. We assume that u, u′, u′′ all belong to Xa (and verify this at the end). Taking the Laplace
transform, we obtain that

s2U(s)− su(0)− u′(0)− 2
(
sU(s)− u(0)

)
+ 2U(s) =

2(s− 1)

(s− 1)2 + 1

⇔ U(s)
(
s2 − 2s+ 2

)
=

2(s− 1)

(s− 1)2 + 1
+ s, Re s > 1.

Hence,

U(s) =
2(s− 1)

((s− 1)2 + 1)2
+

s

(s− 1)2 + 1
=

2(s− 1)

((s− 1)2 + 1)2
+

s− 1

(s− 1)2 + 1
+

1

(s− 1)2 + 1
.

From a table, using the property L(eatu(t)) = U(s− a),

L(et sin t) = 2(s− 1)

(s− 1)2 + 1
, L(tet sin t) = 2(s− 1)

((s− 1)2 + 1)2
, L(et cos t) = 1

(s− 1)2 + 1
,

so
u(t) = tet sin t+ et sin t+ et cos t = et

(
(t+ 1) sin t+ cos t

)
by uniqueness and linearity. Obviously u and its derivatives are exponentially bounded.

Answer: u(t) = et
(
(t+ 1) sin t+ cos t

)
, t ≥ 0.

3. Clearly u ∈ E. This is clear since the function is piecewise “linear.” It is also clear
that D±u(x) exists at all points. Moreover, u is continuous if x ̸= nπ. Hence – by
Dirichlet’s theorem – the Fourier series of u is convergent and converges to u(x) for
all x ̸= nπ and to π/2 if x = nπ. Since the Fourier series converges to something that is
discontinuous, the convergence cannot be uniform. We sketch the graph of the Fourier
series below.
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We find that, for k ̸= 0,

ck =
1

2π

∫ π

−π

u(x)e−ikx dx =
1

2π

∫ π

0

πe−ikx dx =
1

2

[
e−ikx

−ik

]π
0

=
1

i2k

(
1− eikπ

)
=

1− (−1)k

i2k

and

c0 =
1

2π

∫ π

0

π dx =
π

2
.

Hence

u(x) ∼ π

2
+
∑
k ̸=0

1− (−1)k

i2k
eikx =

π

2
+

∞∑
k=−∞

2

i2(2k + 1)
ei(2k+1)x

=
π

2
+

1

i

∞∑
k=−∞

1

2k + 1
ei(2k+1)x.

Recall Parseval’s identity, that is,

1

2π

∫ π

−π

|u(x)|2 dx =
∞∑

k=−∞

|ck|2.

We find that
1

2π

∫ π

−π

|u(x)|2 dx =
1

2π
· π3 =

π2

2

so
π2

2
=

∞∑
k=−∞

|ck|2 =
π2

4
+

∞∑
k=−∞

1

(2k + 1)2
.

Rearranging this yields

π2

2
− π2

4
=

∞∑
k=−∞

1

(2k + 1)2
⇔

∞∑
k=−∞

1

(2k + 1)2
=

π2

4
.

Answer: u(x) =
π

2
+

1

i

∞∑
k=−∞

1

2k + 1
ei(2k+1)x; see above.
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4. Assuming that y, y′, y′′ ∈ G, we take the Fourier transform to find that

(iω)2Y (ω)− 4Y (ω) =
6

1 + ω2
⇔ −(4 + ω2)Y (ω) =

6

1 + ıω2

⇔ Y (ω) =
−6

(1 + ıω2)(1 + 4ω2)

Decomposing into partial fractions, we find that

Y (ω) =
2

ω2 + 4
− 2

ω2 + 1
.

From a table we find that

F(e−2|x|) =
4

4 + ω2
and F(e−|x|) =

1

1 + ω2
,

so by linearity and uniqueness (on G(R)),

y(x) =
1

2
e−2|x| − e−|x|.

This function (and its derivatives) are absolutely integrable and continuous.

Answer: y(x) =
1

2
e−2|x| − e−|x|.

5. Consider the Z transform of u[k] = k(k + 1)ak, that is,

U(z) =
∞∑
k=0

k(k + 1)akz−k =
∞∑
k=0

k2akz−k +
∞∑
k=0

kakz−k.

From a table we find that

U(z) =
az

(z − a)2
+

az2 + a2z

(z − a)3
=

az(z − a) + az2 + a2z

(z − a)3
=

2az2

(z − a)3
, |z| > |a|.

Since |a| < 1, we can consider U(z = 1):

U(z = 1) =
∞∑
k=0

k(k + 1)ak =
2a

(1− a)3
.

Answer:
2a

(1− a)3
.

6. (a) Let un(t) =
2 + 2n2t

n2 + n2t2 + nt4
, n = 1, 2, 3, . . . and 0 ≤ x ≤ 1. Then

un(t) =
2/n2 + 2t

1 + t2 + t4/n
→ 2t

1 + t2
,

as n → ∞. Moreover,∣∣∣∣un(t)−
2t

1 + t2

∣∣∣∣ = ∣∣∣∣(2/n2 + 2t)(1 + t2)− 2t(1 + t2 + t4/n)

(1 + t2 + t4/n)(1 + t2)

∣∣∣∣
=

∣∣∣∣2/n2 + 2t2/n2 − 2t5/n

(1 + t2 + t4/n)(1 + t2)

∣∣∣∣ = 1

n

∣∣∣∣ 2/n+ 2t2/n− 2t5

(1 + t2 + t4/n)(1 + t2)

∣∣∣∣
≤ 1

n

2 + 2 + 2

(1 + 0 + 0)(1 + 0)
=

6

n
.
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Clearly this means that

sup
0≤t≤1

∣∣∣∣un(t)−
2t

1 + t2

∣∣∣∣ ≤ 6

n
→ 0,

as n → ∞. The convergence is therefore uniform and

lim
n→∞

∫ 1

0

2 + 2n2t

n2 + n2t2 + nt4
dt =

∫ 1

0

lim
n→∞

2 + 2n2t

n2 + n2t2 + nt4
dt =

∫ 1

0

2t

1 + t2
dt

=
[
ln
(
1 + t2

)]1
0
= ln 2.

(b) We note that

L(eatu(t))(s) =
∫ ∞

0

u(t)eate−st dt =

∫ ∞

0

u(t)e−(s−a)t dt = (Lu)(s− a),

Answer: (a)

(
e−s − 1

)2
s(e−2s − 1)

(b) see above.

7. Let f(t) be the periodic extension of f(t) =
1

π + t
, 0 ≤ t < 2π. Since f ∈ E ′, the Fourier

series of f converges to f(t) for t ̸= 2nπ and to
1

2

(
1

π
− 1

3π

)
=

2

3π
when x = 2nπ.

x

y

2ππ−π−2π

1
π

1
3π

The integral in the question is the L2-norm difference of f with a pure sine series, so lets
split f into an odd and an even part: f(t) = fo(t) + fe(t). One way is to define

fo(t) =
1

2
(f(t)− f(−t)) and fe(t) =

1

2
(f(t) + f(−t)) .

Clearly fo(−t) = −fo(t), fe(−t) = fe(t) and fo(t) + fe(t) = f(t) for t ∈ R. To visualize
what happens, consider first the Fourier series for f(−t).

x

y

2ππ−π−2π

1
π

1
3π
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Clearly fo ∈ E ′ and fe ∈ E ′ (with fe continuous as well). Therefore fo(t) =
∞∑
k=1

dk sin kt

for t ̸= 2nπ (green) and fe(t) =
∞∑
k=0

ak cos kt for t ∈ R (blue):

x

y

2ππ−π−2π

1
π

1
3π

So what was the point of this? Considering that sinnt ⊥ cosnt in L2, we need to choose bn
as the Fourier coefficients of fo. Then∫ π

−π

∣∣∣∣fe(t) + fo(t)−
∞∑
k=1

bn sinnt

∣∣∣∣2 dt = ∫ π

−π

|fe(t)|2 dt = 2

∫ π

0

fe(t)
2 dt

since fe is even. Noting that for 0 < t < 2π,

fe(x) =
1

2

(
1

π + t
+

1

3π − t

)
,

we find that for 0 < t < 2π,

|fe(x)|2 =
1

4

(
1

π + t
+

1

3π − t

)2

=
1

4

(
1

(π + t)2
− 2

(t+ π)(t− 3π)
+

1

(3π − t)2

)
=

1

4

(
1

(π + t)2
+

1

2π

(
1

π + t
− 1

t− 3π

)
+

1

(3π − t)2

)
,

so

2

∫ π

0

fe(x)
2 dx =

1

2

[
−1

t+ π
+

1

2π
ln

∣∣∣∣ t+ π

t− 3π

∣∣∣∣+ −1

t− 3π

]π
0

=
1

2

(
2

3π
+

1

2π
ln 3

)
=

4 + 3 ln 3

12π
.

Answer:
4 + 3 ln 3

12π
.
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