
Transform theory 2024-01-03 – Solutions

1. (a) Yes. Absolute convergence implies uniform convergence and the partial sums are
continuous functions so the limit is a continuous function.

(b) No, since (for example) U(ω) → π

2
as ω → ∞, the function doesn’t satisfy the

Riemann-Lebesgue lemma.

(c) No, this is not true in general.

(d) No. This is impossible since the Z transform has to have a limit as |z| → ∞ (the
initial value theorem; the limit is u[0]).

(e) Yes. Any polynomial grows slower at infinity than any function eat with a > 0.

Answer: Yes. No. No. No. Yes.

2. Taking the Z transform with |z| > 4 yields

z2U(z)− (z2u[0] + zu[1])− 5(zU(z)− zu[0]) + 6U(z) =
z

z − 2
+

z

z − 4

⇔
(
z2 − 5z + 6

)
U(z) = 2z − z2 +

z(z − 4) + z(z − 2)

(z − 4)(z − 2)
.

Moreover, z2 − 5z + 6 = (z − 3)(z − 2), so

U(z) =
2z − z2

(z − 2)(z − 3)
+

2z2 − 6z

(z − 4)(z − 3)(z − 2)2
=

−z

z − 3
+

2z

(z − 4)(z − 2)2
.

We decompose into partial fractions:

z · 2

(z − 4)(z − 2)2
= z

(
1/2

z − 4
− 1/2

z − 2
− 1

(z − 2)2

)
.

By uniqueness, we use the table to find that

u[n] = −3n +
1

2
4n − 1

2
2n − n

2
2n = 22n−1 − 3n − n+ 1

2
2n.

We see that u[0] = −1 and u[1] = −3 and can directly verify that this solves the equation.

Answer: u[n] = 22n−1 − 3n − n+ 1

2
2n, n = 0, 1, 2, . . .

3. Clearly u ∈ E. This is clear since the function is smooth except for jump points
at x = (2n+1)π, where right- and lefthand limits exist. It is also clear that D±u(x) exists
at all points. Moreover, u is continuous if x ̸= (2n+ 1)π. Hence – by Dirichlet’s theorem
– the Fourier series of u is convergent and converges to u(x) for all x ̸= (2n + 1)π and
to 0 if x = (2n+ 1)π (for example u(π−) = 1 and u(π+) = −1). Since the Fourier series
converges to something that is discontinuous, the convergence cannot be uniform. We
sketch the graph of the Fourier series below.
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We need the Fourier coefficients, so we observe that u is an odd function so a pure
sine-series is sufficient. The integrand is even so for k ≥ 1,

bk =
1

π

∫ π

−π

sin
(x
2

)
sin kx dx =

2

π

∫ π

0

sin
(x
2

)
sin kx dx

= − 1

2π

∫ π

0

(
ei

x
2 − e−ix

2

) (
eikx − e−ikx

)
dx

= − 1

2π

∫ π

0

(
eix(k+

1
2
) − eix(

1
2
−k) − e−ix( 1

2
−k) + e−ix( 1

2
+k)
)
dx

=
1

π

∫ π

0

(
cos(

1

2
− k)x− cos(k +

1

2
)x

)
dx =

1

π

∫ π

0

(
cos(k − 1

2
)x− cos(k +

1

2
)x

)
dx

=
1

π

[
sin(k − 1

2
)x

k − 1
2

−
sin(k + 1

2
)x

k + 1
2

]π
0

=
1

π

(
sin(k − 1

2
)π

k − 1
2

−
sin(k + 1

2
)π

k + 1
2

)
=

1

π

(
−(−1)k

k − 1
2

− (−1)k

k + 1
2

)
=

(−1)k+1

π

(
1

k − 1
2

+
1

k + 1
2

)
=

(−1)k+1

π

(
2k

(k + 1
2
)(k − 1

2
)

)
=

8(−1)k+1k

π(4k2 − 1)
.

Thus u(x) ∼
∞∑
k=1

8(−1)k+1k

π(4k2 − 1)
sin kx.

Answer: u(x) ∼
∞∑
k=1

8(−1)k+1k

π(4k2 − 1)
sin kx; see above.

4. The left-hand side is a convolution of u with t 7→ cos(2t), so taking the Laplace transform
(assuming that u ∈ Xa) shows that

U(s)
s

s2 + 4
=

1

2
L(t3 + t2) =

1

2

(
6

s4
+

2

s3

)
=

3

s4
+

1

s3
, Re s > 0.

So if Re s > 0, we find that

U(s) =
(4 + s2)

s

(
3

s4
+

1

s3

)
=

1

s2
+

3

s3
+

4

s4
+

12

s5
.

Since L(tm) = m!

sm+1
, we find by uniqueness that

u(t) = t+
3t2

2
+

2t3

3
+

t4

2
,
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which clearly is a function in Xa.

Answer: u(t) = t+
3t2

2
+

2t3

3
+

t4

2
, t > 0.

5. We’re looking for a solution to y′′(x) = −4y(x + π) + 4 sin 6x, so obviously y must be
(at least) differentiable. Hence y is continuous. This means that y′′ must be continuous
(since y solves the equation). Hence y ∈ C2. Which means that y′′ ∈ C2, so y ∈ C4 and
so on. In other words, the solution must be very smooth.

• y ∈ C3 implies that the Fourier series of y, y′ and y′′ converges to y(x), y′(x) and y′′(x),

respectively (by Dirichlet’s theorem). So, let y(x) =
∞∑

k=−∞

cke
ikx.

• y being 2π-periodical and y′ ∈ E means we can form the termwise derivative of y
(with equality due to the first point):

y′(x) =
∞∑

k=−∞

ikcke
ikx.

• Similarly, y′′ ∈ E, so (with equality since y ∈ C3)

y′′(x) =
∞∑

k=−∞

−k2cke
ikx.

Therefore, we can write

y′′(x) + 4y(x+ π) = 4 sin 6x ⇔
∞∑

k=−∞

(−k2 + 4eikπ)cke
ikx = −2iei6x + 2ie−i6x

⇔
∞∑

k=−∞

(−k2 + 4(−1)k)cke
ikx = −2iei6x + 2ie−i6x.

For y to be a solution to the differential equation, we must therefore (by uniqueness) have:

k2 = 4(−1)k or ck = 0, k ̸= ±6.

For odd k, k2 ̸= 4(−1)k, and clearly k = 0 does not solve k2 = 4(−1)k. Thus c0 = 0
and c2k+1 = 0. For |k| > 2, we obviously have k2 > 4, so k2 ≠ 4(−1)k and ck = 0
for |k| > 2 and k ̸= ±6. For k = ±2 however, we have k2 = 4, so c±2 are arbitrary.
If k = −6, then

(−36 + 4)c−6 = 2i ⇔ c−6 =
2i

−32
= − i

16
=

1

16i

and if k = 6, then

(−36 + 4)c6 = −2i ⇔ c6 =
−2i

−32
=

i

16
= − 1

16i
.

Hence our solutions must have the form

y(x) = c−2e
−i2x + c2e

i2x +
1

16i

(
e−i6x − ei6x

)
= A cos 2x+B sin 2x− 1

8
sin 6x,

where A and B are arbitrary constants.

Answer: y(x) = A cos 2x+B sin 2x− 1

8
sin 6x.
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6. (a) We observe that f ∈ G(R) so the Fourier transform exists and

F (ω) =

∫ ∞

−∞
f(x)e−iωx dx =

∫ 1

−1

xe−iωx dx =

[
x
e−iωx

−iω

]1
−1

+
1

iω

∫ 1

−1

e−iωx dx

=

[
x
e−iωx

−iω
+

e−iωx

ω2

]1
−1

=
e−iω

−iω
+

e−iω

ω2
−
(
eiω

iω
+

eiω

ω2

)
= i

e−iω + eiω

ω
+ i

e−iω − eiω

iω2
=

2i cosω

ω
− 2i sinω

ω2
, ω ̸= 0.

At ω = 0, we calculate directly:

F (0) =

∫ ∞

−∞
f(x)e−i·0·x dx =

∫ 1

−1

x dx = 0.

(b) Note that with F (ω) from (a), for ω ̸= 0,

|F (ω)|2 =
(
2 cosω

ω
− 2 sinω

ω2

)2

= 4

(
cosω

ω
− sinω

ω2

)2

and since f ∈ L1(R) ∩ L2(R), we can use Plancherel’s theorem:∫ ∞

−∞

(
cosω

ω
− sinω

ω2

)2

dω =
2π

4

∫ ∞

−∞
|f(x)|2 dx =

π

2

∫ 1

−1

x2 dx =
π

2
· 2
3
=

π

3
.

Answer: (a) F (ω) =
2i cosω

ω
− 2i sinω

ω2
, ω ̸= 0, F (0) = 0 (b) see above.

7. Since

0 ≤ 1

(x+ k)2
≤ 1

k2
, x ≥ 0, k = 1, 2, 3, . . . ,

and
∞∑
k=1

1

k2
is convergent, it follows from Weierstrass M-test that

∞∑
k=1

1

(x+ k)2
is uniformly

convergent on [0, 1]. Thus we can exchange the order of integration and summation,
yielding that∫ 1

0

(
∞∑
k=1

1

(x+ k)2

)
dx =

∞∑
k=1

∫ 1

0

1

(x+ k)2
dx =

∞∑
k=1

[
− 1

x+ k

]1
0

=
∞∑
k=1

(
1

k
− 1

k + 1

)
= lim

n→∞

n∑
k=1

(
1

k
− 1

k + 1

)
= lim

n→∞

(
1− 1

n+ 1

)
= 1

since the integrated series is a telescoping sum (write out a couple of terms to ensure
this!).

Answer: 1.
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