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Linear Spaces

A linear space V is a set such that addition and multiplication by
scalars are defined and

u, v ∈ V ⇒ αu + βv ∈ V , α, β ∈ C (or R).

The operations addition and multiplication by constant behaves like
we expect (associative, distributive and commutative).
Multiplication depends on the elements.
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Linear Combinations

Let u1, u2, . . . , un ∈ V . We call

u =
n∑

k=1

αkuk = α1u1 + α2u2 + · · ·+ αnun

a linear combination. If
n∑

k=1

αkuk = 0 ⇔ α1 = α2 = · · · = αn = 0,

we say that u1, u2, . . . , un are linearly independent. The linear
span span{u1, u2, . . . , un} of the vectors u1, u2, . . . , un is defined as
the set of all linear combinations of these vectors (which is a linear
space).

Johan Thim Transform Theory - Le 02



Examples

You’ve seen plenty of linear spaces before. One such example is the
euclidian space Rn consisting of elements (x1, x2, . . . , xn),
where xi ∈ R and

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

λ(x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn).

Recall also that you’ve seen linear spaces that consisted of
polynomials. The fact that our definition is general enough to cover
many cases will prove to be very fruitful.

Johan Thim Transform Theory - Le 02



Function Spaces?

Let C [a, b] be the linear space of all continuous
functions u : [a, b] → C. This is indeed a linear space since

f , g ∈ C [a, b] ⇒ f + g ∈ C [a, b]

and
f ∈ C [a, b], α ∈ C ⇒ αf ∈ C [a, b]

since the sum ((f + g)(x) = f (x) + g(x)) of continuous functions
is continuous and multiplying a continuous function by a constant
((αf )(x) = αf (x)) is continuous.

Multiplication? Usually (fg)(x) = f (x)g(x), so if f , g ∈ C [a, b]
then fg ∈ C [a, b] since the product of continuous functions is
continuous.
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Absolutely Integrable Functions

The space L1(a, b) of absolutely integrable functions on ]a, b[ is a
linear space since∫ b

a
|f (x)| dx < ∞ and

∫ b

a
|g(x)| dx < ∞

⇒

∫ b

a
|f (x) + g(x)| dx ≤

∫ b

a

(
|f (x)|+ |g(x)|

)
dx

=

∫ b

a
|f (x)| dx +

∫ b

a
|g(x)| dx < ∞

and ∫ b

a
|αf (x)| dx = |α|

∫ b

a
|f (x)| dx < ∞.

Multiplication? Usually (fg)(x) = f (x)g(x), but if f , g ∈ L1(a, b)
then fg ̸∈ L1(a, b) in general.
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Basis

Definition. A subset {v1, v2, . . . , vn} ⊂ V of linearly indepen-
dent vectors is called a base for V if V = span{v1, v2, . . . , vn}
(meaning that every vector v ∈ V can be expressed uniquely as
a linear combination of the elements v1, v2, . . . , vn). The non-
negative integer n is called the dimension of V : dim(V ) = n.

Basis

In general, however, we do not wish to restrict ourselves to finite
dimensions or vectors of real or complex numbers.

So what if V is infinite dimensional? Meaning there is no finite
set {v1, v2, . . . , vn} that spans V ?
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Sequences

We denote a sequence u1, u2, u3, . . . (or u1, u2, . . . , un if it is a
finite sequence) of elements of a linear space V by (uk)

∞
k=1

((uk)nk=1). If there’s no risk of misunderstanding, we might just say
“the sequence uk .”

As an example, consider the sequence uk = x +
1
k

in R. That
means that

u1 = x + 1, u2 = x +
1
2
, u3 = x +

1
3
, . . .

We see that as k → ∞, clearly uk → x . In other words, the
sequence uk converges to x . Reformulating a bit, what we have is
that

lim
k→∞

|uk − x | = lim
k→∞

1
k
= 0.

Why write in this particular manner? We’ll see...
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Another example could be the decimal expansion of a real number:

x1 = 3, x2 = 3.1, x3 = 3.14, x4 = 3.141, x5 = 3.1415, . . . ,

where we might suspect that xn → π as n → ∞.
We’ve seen other examples of sequences in the form of partial sums
like, for example,

Sn = 1 +
1
2
+ · · ·+ 1

2n
=

n∑
k=0

(
1
2

)k

, n = 0, 1, 2, . . . ,

where

Sn =
1 − (1/2)n+1

1 − 1/2
= 2

(
1 − 2−n−1)→ 2 as n → ∞.

This was the reason for writing that
∞∑
k=0

(
1
2

)k

= 2.
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Divergent Sequences

Sequences do not need to be convergent. If xn = n, n = 0, 1, 2, . . .,
for example, we obtain that

x0 = 0, x1 = 1, x2 = 2, x3 = 3, . . . ,

so clearly xn → ∞. We might also consider something
like xn = (−1)n so that

x0 = 1, x1 = −1, x2 = 1, x3 = −1, . . . ,

where it is clear that xn has no limit as n → ∞ (but the sequence is
bounded).
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Sequences of Functions

Let

un(x) = n

(
sin

(
x +

1
n

)
− sin(x)

)
, n = 1, 2, 3, . . .

What happens as n → ∞?
Another example would be un(x) = exp(nx), n = 0, 1, 2, . . ..
As n → ∞, we find that

un(x) →


∞, x > 0
1, x = 0,
0, x < 0.

Each un is continuous but the limiting function is not.
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Series

We’ve also worked with function series previously (and obviously
last lecture). The power series from TATA42 are an example:

Sn(x) = c0 + c1x + c2x
2 + · · ·+ cnx

n, n = 0, 1, 2, . . . ,

where we wrote

S(x) =
∞∑
k=0

ckx
k = lim

n→∞
Sn(x)

for those x where the series converges. That is, we define S(x) as
the limit of the sequence Sn(x) as n → ∞ whenever this limit
exists.
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Yet another example (last one, I promise..)

Consider the partial Fourier sums:

Sn(x) =
n∑

k=−n

cke
ikx ,

where ck are the Fourier coefficients of some
function u : [−π, π] → C. The main problem in the first half of this
course is dealing with the sequence Sn of partial Fourier sums. In
particular, we’re interested in whether Sn(x) converges (in some
sense) and if the limit is actually u(x) or not.
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Continuity

Sequences are often useful when speaking of continuity of a
function u from subsets of R or C into R or C. I’m thinking of
Heine’s definition of continuity:

u is continuous at x

if and only if
lim
n→∞

u(xn) = u(x)

for all sequences xn such that lim
n→∞

xn = x , where we require that
all xn belongs to the domain of u.
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Normed Linear Spaces

To measure distances between elements in a linear space (or
“lengths” of elements), we define the abstract notion of a norm on
a linear space (in the cases where this is allowed).

Definition. A normed linear space is a linear space V endowed
with a norm ∥ · ∥ that assigns a non-negative number to each
element in V in a way such that

1 ∥u∥ ≥ 0 for every u ∈ V ,
2 ∥αu∥ = |α|∥u∥ for u ∈ V and every constant α,
3 ∥u + v∥ ≤ ∥u∥+ ∥v∥ for every u, v ∈ V .

Norm
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Euclidian Distance

We note that in linear algebra, we typically used the norm

∥x∥ := | (x1, x2, . . . , xn) | =
√

|x1|2 + |x2|2 + · · ·+ |xn|2

on the euclidean space Rn (or Cn). We will use different types of
norms in this course since we will be dealing with more complex
spaces.

An element e in V with length 1, that is, ∥e∥ = 1, is called a unit
vector.
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Examples

The space Rn with the

norm ∥(x1, x2, . . . , xn)∥ =
√

x2
1 + x2

2 + · · ·+ x2
n .

The space Rn with the
norm ∥x∥ = max{|x1|, |x2|, . . . , |xn|}.

Some examples of normed spaces

The first example is obviously already something you’re familiar
with. It is also an example of something we will call an inner
product space below. The second example is a bit different. In
some sense equivalent, but the norms yield different values for the
same vector. Try to prove that the second one satisfies all the
requirements for a norm.
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The Sup-norm

The space C [a, b] consisting of continuous functions on the closed
interval [a, b] endowed with the norm

∥f ∥C [a,b] = max
a≤t≤b

|f (t)|, f ∈ C [a, b].

The space of continuous functions with sup-norm

Recall that a continuous function |f | (if f is continuous then so
is |f |) on a closed bounded interval [a, b] always has a maximum
value.
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Sequence Spaces

The space l1 consisting of all sequences (x1, x2, x3, . . .) such that
the norm

∥x∥l1 =
∞∑
k=1

|xk | < ∞.

We might also consider the space lp for 1 ≤ p < ∞ with the
norm

∥x∥lp =

( ∞∑
k=1

|xk |p
)1/p

< ∞.

Sequence spaces
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The space L1

The space L1(R) of all integrable (on R) functions with the norm

∥f ∥L1(R) =

∫ ∞

−∞
|f (x)| dx .

In other words, all functions that are absolutely integrable on R.
Note here that there’s an army of dogs buried here. Indeed, the
integral is not in the sense we’re used to but rather in the form
of the Lebesgue integral. We will not get stuck at this point, but
it might be good to know.

The space of absolutely integrable functions
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Which Norm?

Exercise: Prove that the spaces above are normed linear spaces.
Do you see any useful ways to consider some “multiplication” of
vectors?

We see that an underlying linear space (like Rn) might be endowed
with different norms. This is true in general, and changing norms
usually changes the results (at least for infinite dimensional spaces).
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Convergence in Normed Spaces

Let u1, u2, . . . be a sequence in a normed space V . We say
that un → u for some u ∈ V if ∥un − u∥ → 0 as n → ∞. This is
called strong convergence or convergence in norm. Note that
we assumed above that the element u belonged to V . This may
not be the case for every convergent sequence. How? Typically, we
consider a linear subspace W of V . A sequence in W might be
convergent when viewed as a sequence in V , but the limiting
element might not belong to W .
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A Peak at the Space E

Definition. A function u : [a, b] → C is piecewise continuous
if there are a finite number of points such that u is continuous
everywhere except for at these points. Moreover, if c ∈]a, b[ is
one of these exception points, the limits

lim
x→c−

u(x) and lim
x→c+

u(x)

must exist.

Piecewise continuous function

The space E [a, b] consists of all piecewise continuous functions
on [a, b].
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One-sided limits

We will denote the left- and righthand limits at a point c by

u(c−) = lim
x→c−

u(x) and u(c+) = lim
x→c+

u(x).

As an example, we could consider the function

f (x) =

{
x , −2 ≤ x < 1,
4 − x , 1 ≤ x ≤ 3.

x

y

−2−1 1 2 3
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A More Dramatic Example

The function below is in E [−2, 4] (it is in fact even piecewise
constant).

x

y

−2 −1 1 2 3 4
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Continuous Mappings on Normed Spaces

Analogously with real analysis, we can define continuous mappings
on normed spaces.

Definition. Let V and W be normed spaces. A function u : V →
W is said to be continuous if for every ϵ > 0, there exists a δ > 0
such that

x , y ∈ V , ∥x − y∥V < δ ⇒ ∥u(x)− u(y)∥W < ϵ.

Continuity in normed spaces

Basically this states that we call the function u : V → W
continuous if x and y are close in V implies that u(x) and u(y) are
close in W .
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For any ϵ > 0, there exists δ > 0 such that

∥x − y∥V < δ ⇒ ∥u(x)− u(y)∥ < ϵ.

u

u

δ

ϵ

V W

x

y

u(x)

u(y)
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Series in Normed Spaces

Let u1, u2, u3, . . . be a sequence in V . How do we interpret an
expression of the form

S =
∞∑
k=1

uk , (1)

that is, what does an infinite sum of elements in V mean? We
define the partial sums by

Sn =
n∑

k=1

uk , n = 1, 2, 3, . . .

If Sn converges to some S ∈ V in norm, that is,

lim
n→∞

∥∥∥∥∥S −
n∑

k=1

uk

∥∥∥∥∥ = 0,

then we write that (1) is convergent.
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Absolute Convergence

Notice that this does not mean that
∞∑
k=1

∥uk∥ < ∞.

If this second series of real numbers is convergent, we call (1)
absolutely convergent (compare with what we did in TATA42).
Note also that an absolutely convergent series is convergent in the
sense above (why?).
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Inner Product Spaces

A norm is not enough to define a suitable geometry for our
purposes, so we will usually work with inner product spaces instead.

Definition. An inner product ⟨ · , · ⟩ on a vector space V is a
complex valued (sometimes real) function on V × V such that

1 ⟨u, v⟩ = ⟨v , u⟩
2 ⟨u + v , w⟩ = ⟨u, w⟩+ ⟨v , w⟩
3 ⟨αu, v⟩ = α ⟨u, v⟩
4 ⟨u, u⟩ ≥ 0
5 ⟨u, u⟩ = 0 if and only if u = 0.

Inner product
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Properties

Note that 1 and 2 implies that ⟨u, v + w⟩ = ⟨u, v⟩+ ⟨u, w⟩ and
that 1 and 3 implies that ⟨u, αv⟩ = α ⟨u, v⟩.

In an inner product space, we use ∥u∥ =
√
⟨u, u⟩ as the norm.

Why is this a norm? We’ll get to that.

Notice that if we’re given a linear space of functions, there’s an
infinite number of different inner products on this space that pro-
vides the same geometry. Suppose that ⟨u, v⟩ is an inner product.
Then α ⟨u, v⟩ is also an inner product for any α > 0.
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General sets

Linear spaces

Normed spaces

Inner product spaces
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Examples

Definition. The space Cn consisting of n-tuples (z1, z2, . . . , zn)
with

⟨z , w⟩ =
n∑

k=1

zkwk , z ,w ∈ Cn,

is an inner product space.

The inner product space Cn
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The Sequence Space l2

Definition. The space l2 consisting of all sequences (x1, x2, x3, . . .)
of complex numbers such that the norm

∥x∥l2 =

( ∞∑
k=1

|xk |2
)1/2

< ∞.

This is an inner product space if

⟨x , y⟩ =
∞∑
k=1

xkyk , x , y ∈ l2.

The inner product space l2
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The Function Space of Square Integrable Functions

Definition. The space L2(a, b) consists of all “square integrable”
functions with the inner product

⟨f , g⟩ =
∫ b

a
f (t)g(t) dt.

Note that a = −∞ and/or b = ∞ is allowed.

The inner product space L2(a, b)
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Normed Spaces vs. Inner Product Spaces

Why not the same examples as for the normed spaces? The simple
answer is that most of those examples are not inner product
spaces. The last two examples above are very important and the
fact that it’s the number 2 is not random and this is actually the
only choice for when Lp(a, b), which consists of functions for which

∥f ∥Lp(a,b) =
(∫ b

a
|f (t)|p dt

)1/p

< ∞

are inner product spaces. Again, we also note that the integrals
above are more general than what we’ve seen earlier but if the
function f is nice enough the value will coincide with the
(generalized) Riemann integral.
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Orthogonality

Definition. If u, v ∈ V and V is an inner product space, we
say that u and v are orthogonal if ⟨u, v⟩ = 0. We denote this
by u ⊥ v .

Orthogonality

A sequence un is called pairwise orthogonal if ⟨ui , uj⟩ = 0 for
every i ̸= j . We have the generalized Pythagorean theorem.

Theorem. If u1, u2, . . . , un are pairwise orthogonal, then

∥u1 + u2 + · · ·+ un∥2 = ∥u1∥2 + ∥u2∥2 + · · ·+ ∥un∥2.
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The Cauchy-Schwarz Inequality

Theorem. If u, v ∈ V and V is an inner product space, then

| ⟨u, v⟩ | ≤ ∥u∥∥v∥.

The Cauchy-Schwarz inequality
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Orthogonal Projection

Let e ∈ V with ∥e∥ = 1. For u ∈ V , we define the orthogonal
projection v of u on e by v = ⟨u, e⟩ e. This is reasonable
since u − v ⊥ e:

⟨u − v , e⟩ = ⟨u, e⟩ − ⟨v , e⟩ = ⟨u, e⟩ − ⟨u, e⟩ ⟨e, e⟩ = 0.

u − v

v

u

e

Note that

∥u∥2 = ∥u − v + v∥2

= ∥u − v∥2 + ∥v∥2

= ∥u − v∥2 + | ⟨u, e⟩ |2.
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ON systems

Definition. Let V be an inner product space. We call
{e1, e2, . . . , en} ⊂ V ,
or {e1, e2, . . .} ⊂ V ,

an ON system in V if ei ⊥ ej for i ̸= j and ∥ei∥ = 1 for all i .

ON system

We do not assume that V is finite dimensional and that n is the
dimension, and we do not assume that the ON system consists of
finitely many elements.
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Finite ON Systems

If the ON system is finite, consider W = span{e1, e2, . . . , en} ⊂ V .
We define the orthogonal projection Pv of a vector v ∈ V onto the
linear space W by

Pv =
n∑

k=1

⟨v , ek⟩ ek .

If v ∈ W , then clearly Pv = v . If v ̸∈ W , then Pv is the vector
that minimizes ∥v − Pv∥. Note that this happens if v − Pv ⊥ W
(meaning perpendicular to every vector in W ). We also note that

∥v∥2 = ∥v − Pv∥2 +
n∑

k=1

| ⟨v , ek⟩ |2

These facts are well-known from linear algebra.
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Infinite ON Systems

If the ON system is infinite, let

Pnv =
n∑

k=1

⟨v , ek⟩ ek , v ∈ V , n = 1, 2, 3, . . .

Each Pnv is the projection on a specific n-dimensional subspace
of V (the order of the elements in the ON system is fixed).

Theorem. Let V be an inner product space, let v ∈ V and
let {e1, e2, . . .} be an ON system in V . Then

∞∑
k=1

| ⟨v , ek⟩ |2 ≤ ∥v∥2.

Bessel’s inequality
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The Riemann-Lebesgue Lemma

Since ∥v∥ < ∞ for every v ∈ V , this inequality proves that the
series in the left-hand side converges. A direct consequence of this
is the Riemann-Lebesgue lemma.

Theorem. Let V be an inner product space, let v ∈ V and
let {e1, e2, . . .} be an ON system in V . Then

lim
n→∞

⟨v , en⟩ = 0.

The Riemann-Lebesgue Lemma
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The Infinite Dimensional Case

If dim(V ) = n and our ON system has n elements, then we know

that we can always represent v ∈ V as v =
n∑

k=1

⟨v , ek⟩ ek

(standard linear algebra). What happens if dim(V ) = ∞? When
can we expect that an ON systems allows for something similar?
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Closed ON Systems

Definition. Let V be an inner product space with dim(V ) = ∞.
We call an orthonormal system {e1, e2, . . .} ⊂ V closed if for
every v ∈ V and every ϵ > 0, there exists a sequence c1, c2, . . . , cn
of constants such that∥∥∥∥∥v −

n∑
k=1

ckek

∥∥∥∥∥ < ϵ. (2)

Closed ON systems

How do we typically find numbers ck that work (they’re not
unique)? One answer comes in the form of orthogonal projections.
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Generalized Fourier Coefficients

Definition. For a given ON system, the complex numbers ⟨v , ek⟩,
k = 1, 2, . . ., are called the generalized Fourier coefficients
of v .

Fourier coefficients

We define the operator Pn that projects a vector onto the linear
space spanned by {e1, e2, . . . , en} by

Pnv =
n∑

k=1

⟨v , ek⟩ ek , v ∈ V .
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Choosing ck

We now note that the choice ck = ⟨v , ek⟩ is the choice that
minimizes the left-hand side in (2). Indeed, suppose

that u =
n∑

k=1

ckek for some constants ck . Then

∥v − u∥2 = ∥v − Pnv + Pnv − u∥2

=
/
(v − Pnv) ⊥ (Pnv − u)

/
= ∥v − Pnv∥2 + ∥Pnv − u∥2

= ∥v − Pnv∥2 +

∥∥∥∥∥
n∑

k=1

(⟨v , ek⟩ − ck)ek

∥∥∥∥∥
2

= ∥v − Pnv∥2 +
n∑

k=1

| ⟨v , ek⟩ − ck |2.

In other words, u = Pnv is the only element that
minimizes ∥v − u∥.

Johan Thim Transform Theory - Le 02



Alternative Definition of Closedness

Because of this, one can reformulate (equivalently) the definition of
a closed ON system as follows.

Definition. Let V be an inner product space with dim(V ) = ∞.
We call an orthonormal system {e1, e2, . . .} ⊂ V closed if for
every v ∈ V

lim
n→∞

∥∥∥∥∥v −
n∑

k=1

⟨v , ek⟩ ek

∥∥∥∥∥ = 0.

We note that in the case where the ON system is closed, we can
strengthen Bessel’s inequality (by replacing the inequality with
equality) obtaining what is known as Parseval’s identity (or
Parseval’s formula).
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Parseval’s identity

Theorem. Suppose that W = {e1, e2, . . .} is an ON system
for the inner product space V . Then W is closed if and only if
Parseval’s identity holds:

∞∑
k=1

| ⟨v , ek⟩ |2 = ∥v∥2

for every v ∈ V .
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Proof

Proof. Let v ∈ V . Then

∥v∥2 = ∥v − Pnv∥2 + ∥Pnv∥2

since v − Pnv ⊥ Pnv . Hence∥∥∥∥∥v −
n∑

k=1

⟨v , ek⟩ ek

∥∥∥∥∥
2

= ∥v∥2 −
n∑

k=1

| ⟨v , ek⟩ |2

and letting n → ∞ in this equality, we see that closedness is
equivalent with Parseval’s identity holding.
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Completeness

Definition. An ON-system {e1, e2, . . .} in V is called complete
if, for every v ∈ V ,

⟨v , ek⟩ = 0 for all k = 1, 2, 3, . . . ⇔ v = 0.

We realize that completeness is something we want if we wish to
use an ON-system as a basis for V since this is needed to make
representations in terms of linear combinations of basis vectors
needs to be unique to avoid problems.

Johan Thim Transform Theory - Le 02



Generalized Parseval’s Identity

Theorem. Suppose that {e1, e2, e3, . . .} is a closed infinite ON-
system in V and let u, v ∈ V . If ak = ⟨u, ek⟩ and bk = ⟨v , ek⟩,
then

⟨u, v⟩ =
∞∑
k=1

akbk .

Generalized Parseval’s identity
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Fourier Series?

So that brings us back to one of the main subjects of this course:
Fourier series. Let’s look at a particular inner product space.
We consider the space L2(−π, π) consisting of square integrable
functions u : [−π, π] → C:∫ π

−π
|u(x)|2 dx < ∞.

We define the inner product on this space by

⟨u, v⟩ = 1
2π

∫ π

−π
u(x)v(x) dx .

Note that this infers that we have the norm

∥u∥ =

(
1
2π

∫ π

−π
|u(x)|2 dx

)1/2

,

which is finite for u ∈ L2(−π, π).
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ON Systems in E (or L2(−π, π))

The set of functions e ikx , k ∈ Z, is a closed orthonormal system
in E with the inner product defined above. We consider E as a
subspace of L2(−π, π). Clearly we have

∥e ikx∥2 =
1
2π

∫ π

−π
e ikxe−ikx dx =

2π
2π

= 1.

Similarly, if k , l ∈ Z and k ̸= l , we have〈
e ikx , e ilx

〉
=

1
2π

∫ π

−π
e ikxe−ilx dx =

1
2π

∫ π

−π
e i(k−l)x dx = 0

since e i(k−l)x is 2π-periodic. So this is an ON-system in E .

Johan Thim Transform Theory - Le 02



Closedness

The fact that this ON-system is closed is a more difficult argument
so we’ll get back to this in lecture 5. Note though, that E is a a
subspace of L2(−π, π) that has some issues. For example there are
sequences in E that converge (in the L2-norm) to elements outside
of E . This is a disadvantage, but nothing that will cause too many
problems for us.
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The Real System

The set of functions
1√
2
, cos kx , k = 1, 1, 2, . . .,

sin kx , k = 1, 2, 3, . . ., is a closed orthonormal system in E with the
inner product

⟨u, v⟩ = 1
π

∫ π

−π
u(x)v(x) dx .

Note that the normalization constant is different compared to the
complex case (why do you think that is?). We should observe that
these two systems are equivalent due to Euler’s formulas.
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The Space E

So the question right now is what do we really need?
Most of the results we’re going to see have a more general and
complete version, but we would need considerably more time to
develop the necessary tools to attack these problems. So what
we’re going to do instead is to consider the space E with the inner
product

⟨u, v⟩ = 1
2π

∫ π

−π
u(x)v(x) dx , u, v ∈ E . (3)

As stated above, this space has some serious drawbacks, but these
problems are not crucial to what we’re going to do.
First, let’s verify that things work as expected. When we write E ,
we now mean the combination of the set E of piecewise continuous
functions combined with the inner product defined by (3).
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Linear Space

E is a linear space. Obviously, if u ∈ E and α is a constant,
then αu has the same exception points as u (unless α = 0) and the
right- and lefthand limits will exist for αu(x). Let u, v ∈ E and
let a1, a2, . . . , an be the exceptions points of u and b1, b2, . . . , bm
be the exception points of v . Then u + v has (at most) m + n
exception points. Indeed, if we sort the exception points
as c1 < c2 < · · · < cn+m, then u + v will be continuous on
each ]ci , ci+1[ and the right- and lefthand limits at the exception
points will exist since either it is an exception point for u or v
(potentially both), or it is a point of continuity for u or v .
Therefore the limit of the sum exist.

Johan Thim Transform Theory - Le 02



Inner Product

Equation (3) defines an inner product on E . Most of the properties
follow from the linearity of the integral. The fact that ⟨u, u⟩ = 0
implies that u = 0 is clear since

⟨u, u⟩ = 1
2π

∫ π

−π
|u(x)|2 dx = 0

so u = 0 is the only possible piecewise continuous function
(if u(x0) ̸= 0 at some point then there is an interval ]x0 − δ, x0 + δ[
where |u(x)| > 0 and so the Riemann integral will be strictly
greater than zero).
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Fourier Coefficients and the Riemann Lebesgue Lemma

So in general, we know that ⟨u, ek⟩ → 0 as k → ∞ if {e1, e2, . . .}
is an ON system with respect to the inner product at hand (in our
case (3)). This was a consequence of Bessel’s inequality. In
particular, this means that for u ∈ E , we have

lim
n→∞

∫ π

−π
u(x)e−inx dx = 0.

Note that this implies that

lim
n→∞

∫ π

−π
u(x) sin(nx) dx = 0 and lim

n→∞

∫ π

−π
u(x) cos(nx) dx = 0.

So apparently these limits hold for all piecewise continuous
functions. However, these identities are also true for u ∈ L1(−π, π)
(this needs a proof however).
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