TATA66 Exercises, first set

Hand in solutions to six of the following ten exercises

1 Let $f_n: \mathbb{R} \to [0,\infty], n \ge 1$, be measurable. Show, using the monotone convergence theorem, that

$$\int_{\mathbb{R}} \left(\sum_{n=1}^{\infty} f_n(x) \right) dx = \sum_{n=1}^{\infty} \int_{\mathbb{R}} f_n(x) \, dx.$$

(Do not worry about measurability of sets and functions in this or other exercises.)

- **2** Use the dominated convergence theorem to show that $\lim_{n \to \infty} \int_0^\infty \frac{e^{-nx}}{\sqrt{x} + \sin x} \, dx = 0.$
- *3 Let $f_k \in L^1(\mathbb{R}), k \ge 1$, be such that $||f_k||_1 \le 2^{-k}$.

(a) Let $g(x) = \sum_{k=1}^{\infty} |f_k(x)|, x \in \mathbb{R}$. Show that $\int_{\mathbb{R}} g(x) dx < \infty$.

Hence $g(x) < \infty$ for almost every $x \in \mathbb{R}$. Let $A = \{x \in \mathbb{R} : g(x) = \infty\}$ and let $f : \mathbb{R} \to \mathbb{C}$ be the function given by $f(x) = 0, x \in A$, and $f(x) = \sum_{k=1}^{\infty} f_k(x), x \notin A$ (the series being absolutely convergent for every $x \notin A$).

(b) Show that $f \in L^1(\mathbb{R})$ and that $\sum_{k=1}^n f_k \to f$ in $L^1(\mathbb{R})$ as $n \to \infty$.

(The result in this exercise is an essential step in proving that $L^1(\mathbb{R})$ is complete.)

- **4** Let $f_k \to f$ in $L^1(\mathbb{T})$. Show that $\widehat{f}_k(n) \to \widehat{f}(n)$ for every $n \in \mathbb{Z}$.
- 5 Prove Corollary 3.4.11 in Fourier Analysis, Distribution Theory, and Wavelets.
- *6 For $N \ge 0$ let $P_N(t) = \int_0^t D_N(r) dr$, where D_N is the Dirichlet kernel.
 - (a) Show that P_N is odd, that $0 \le P_N(t) \le 2\pi$ if $0 \le t \le \pi$, and that the function $P_N(t) t$ is 2π -periodic.
 - (b) Let $f \in C^1(\mathbb{T})$. Show that $|S_N f(t)| \leq |\widehat{f}(0)| + 2\pi ||f'||_1$ for all $t \in \mathbb{R}$.
 - 7 Let X be the linear space C([0,1]) with inner product given by $(f,g) = \int_0^1 f(x)\overline{g(x)} dx$. Show that X is not a Hilbert space by giving a concrete example of a Cauchy sequence f_1, f_2, \ldots in X such that there is no $f \in X$ such that $f_n \to f$ in X.
- *8 The linear space $X = C^1([0,1])$ with norm given by $||f|| = ||f||_{\infty} + ||f'||_{\infty}$ is a Banach space. Let $Y = \{f \in X : f(0) = f'(0) = 0\}$ and let $g(x) = x, 0 \le x \le 1$. Show that Y is a closed subspace of X, that $\inf_{f \in Y} ||g f|| = 1$, but that ||g f|| > 1 for every $f \in Y$.
 - **9** Show that $\left\{\sin\frac{t}{4}, \sin\frac{3t}{4}, \sin\frac{5t}{4}, \sin\frac{7t}{4}, \ldots\right\}$ is an orthogonal basis for $L^2([0, 2\pi])$.
- *10 Let $f, g \in L^2(\mathbb{T})$.
 - (a) Show that the *n*:th Fourier coefficient of $(S_N f)(S_N g)$ is equal to zero if |n| > 2N and equal to $\sum_{k=a}^{b} \widehat{f}(n-k)\widehat{g}(k)$ if $|n| \le 2N$ (determine *a* and *b*).
 - (b) Show that $fg \in L^1(\mathbb{T})$ and that $(S_N f)(S_N g) \to fg$ in $L^1(\mathbb{T})$.
 - (c) For $n \in \mathbb{Z}$, show that the series $\sum_{k=-\infty}^{\infty} \widehat{f}(n-k)\widehat{g}(k)$ is absolutely convergent and, using the results in (a), (b), and exercise 4, that its sum is equal to $\widehat{fg}(n)$.