TATA66 Exercises, second set

Hand in solutions to six of the following ten exercises

1 For $n=1,2, \ldots$, let $f_{n}=2^{n-1} \chi_{\left[-1 / 2^{n}, 1 / 2^{n}\right]}$ and let $p_{n}=f_{1} * f_{2} * \ldots * f_{n}$.
(a) Roughly sketch the graphs of p_{1}, p_{2}, and p_{3} (no calculation required).
(b) Show that $\operatorname{supp} p_{n} \subseteq[-1,1]$ for all $n \geq 1$.
(c) Show that $p_{n} \in C^{n-2}(\mathbb{R})$ if $n \geq 2$.
*2 Let $f \in L^{1}(\mathbb{R})$ and $g \in L^{p}(\mathbb{R})$, where $1<p<\infty$. Without using Minkowski's integral inequality or Young's inequality, show that $f * g$ is defined almost everywhere and that $\|f * g\|_{p} \leq\|f\|_{1}\|g\|_{p}$. Hint: $|f(x-y) g(y)|=\left(|f(x-y) \| g(y)|^{p}\right)^{1 / p}|f(x-y)|^{1-1 / p}$.
$\mathbf{3}$ Let $f(x)=1 /\left(1+x^{2}(2+\sin x)\right), x \in \mathbb{R}$. Show that $\widehat{f} \in L^{1}(\mathbb{R})$.
4 Recall that for $R>0$, the Fejér kernel F_{R} is given as an inverse Fourier transform:

$$
F_{R}(x)=\frac{1}{2 \pi} \int_{-R}^{R}\left(1-\frac{|\xi|}{R}\right) e^{i x \xi} d \xi=\frac{1-\cos R x}{\pi R x^{2}}, \quad x \in \mathbb{R} .
$$

Using these expressions, show that $F_{R} \in L^{1}(\mathbb{R})$ and motivate carefully why $\widehat{F_{R}}(0)=1$. (This shows that $\int_{\mathbb{R}} F_{R}(x) d x=1$.)
*5 Let $f \in L^{1}(\mathbb{R})$. For $\varepsilon>0$, show that the formula

$$
f_{\varepsilon}(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} e^{-\varepsilon|\xi|} \widehat{f}(\xi) e^{i x \xi} d \xi
$$

defines f_{ε} for all $x \in \mathbb{R}$, and that $f_{\varepsilon} \rightarrow f$ in $L^{1}(\mathbb{R})$ as $\varepsilon \rightarrow 0$.
6 Show that if $\varphi \in \mathscr{S}(\mathbb{R})$, then $\varphi^{\prime} \in \mathscr{S}(\mathbb{R})$ and $x \varphi \in \mathscr{S}(\mathbb{R})$, and that if $\varphi_{n} \rightarrow \varphi$ in $\mathscr{S}(\mathbb{R})$, then $\varphi_{n}{ }^{\prime} \rightarrow \varphi^{\prime}$ and $x \varphi_{n} \rightarrow x \varphi$ in $\mathscr{S}(\mathbb{R})$. (This shows that the operations $\varphi \mapsto \varphi^{\prime}$ and $\varphi \mapsto x \varphi$ are continuous on $\mathscr{S}(\mathbb{R})$.)
*7 Given that $-1<a<1$, show that the function

$$
\varphi(x)=\frac{e^{a x}}{e^{x}+e^{-x}}, \quad x \in \mathbb{R}
$$

belongs to the Schwartz class $\mathscr{S}(\mathbb{R})$.
8 Let $f(x)=x /\left(1+x^{2}\right), x \in \mathbb{R}$. Show that $f \notin L^{1}(\mathbb{R})$ but that $f \in L^{2}(\mathbb{R})$, and determine the Fourier transform $\mathscr{F} f$ by using the sequence $f_{n}=f \chi_{[-n, n]}, n=1,2, \ldots$.

9 Let $f(x)=x /\left(1+x^{2}\right), x \in \mathbb{R}$, and let $g(x)=(\sin R x) /(\pi x), x \neq 0$, where $R>0$. Show that $f, g \in L^{2}(\mathbb{R})$, determine $\mathscr{F} f$ and $\mathscr{F} g$ (for instance by looking them up in a table), and calculate $f * g$ by using the formula $f * g=(\mathscr{F} f \mathscr{F} g)^{\wedge^{-1}}$.
$* 10$ Let $f, g \in L^{2}(\mathbb{R})$. Show that $2 \pi \widehat{f g}(\xi)=(\mathscr{F} f * \mathscr{F} g)(\xi)$ for all $\xi \in \mathbb{R}$ by using sequences φ_{n} and ψ_{n} in $\mathscr{S}(\mathbb{R})$ such that $\varphi_{n} \rightarrow f$ and $\psi_{n} \rightarrow g$ in $L^{2}(\mathbb{R})$.

