TATA66 Exercises, third set

Hand in solutions to six of the following ten exercises

- *1 Let f_n and p_n be as in exercise 1 of TATA66 Exercises, second set, the results of which may be used freely here.
 - (a) Show that if $c \ge 0$ is a constant and $g \in C(\mathbb{R})$ satisfies $|g(x) g(y)| \le c|x y|$ for all $x, y \in \mathbb{R}$, then $|g * f_n(x) g * f_n(y)| \le c|x y|$, and $|g * f_n(x) g(x)| \le c/2^{n+1}$.
 - (b) Show that the sequence p_n converges pointwise to a function $p \in \mathscr{D}(\mathbb{R})$.
 - 2 Consider the following formulas, where φ ∈ D(ℝ):
 (a) ⟨u, φ⟩ = ∑_{n=0}[∞] 2ⁿφ(n), (b) ⟨v, φ⟩ = ∑_{n=0}[∞] 2⁻ⁿφ⁽ⁿ⁾(0).
 Determine whether or not the formulas give well-defined distributions u, v ∈ D'(ℝ).
- *3 Let D_R be the Dirichlet kernel for the line. Show that $D_R \to \delta$ in $\mathscr{D}'(\mathbb{R})$ as $R \to \infty$. Hint: Any $\varphi \in \mathscr{D}(\mathbb{R})$ has compact support.
- *4 Define the function f as follows: f(x) = n! for $2^{-n} \le x < 2 \cdot 2^{-n}$, where n = 1, 2, ...,and f(x) = 0 for $x \ge 1$. Show that there does not exist a distribution $u \in \mathscr{D}'(\mathbb{R})$ such that u = f on $]0, \infty[$.
 - 5 Prove that pv(1/x) is a well-defined distribution. As a first step, establish that

$$\int_{|x|\geq\varepsilon}\frac{\varphi(x)}{x}\,dx = -\big(\varphi(\varepsilon) - \varphi(-\varepsilon)\big)\ln\varepsilon - \int_{|x|\geq\varepsilon}\varphi'(x)\ln|x|\,dx, \quad \varphi\in\mathscr{D}(\mathbb{R}), \varepsilon>0.$$

- **6** Let $f \in C^{\infty}(\mathbb{R})$ and $u \in \mathscr{D}'(\mathbb{R})$. Prove, directly from the definitions, that $fu \in \mathscr{D}'(\mathbb{R})$.
- 7 Let $f \in C^1(\mathbb{R})$. Show that the function (f(x) f(0))/x, $x \neq 0$, can be extended to a continuous function on \mathbb{R} , and that the following equality then holds in $\mathscr{D}'(\mathbb{R})$:

$$f \operatorname{pv}(1/x) = f(0) \operatorname{pv}(1/x) + \frac{f(x) - f(0)}{x}$$

(The order of pv(1/x) is ≤ 1 , so the product f pv(1/x) is well defined.)

- 8 Let $u \in \mathscr{D}'(\mathbb{R})$. Define what should be meant by the conjugate \overline{u} , the real part $\operatorname{Re} u$, and the imaginary part $\operatorname{Im} u$ of u. Also define what should be meant by saying that u is real. Finally, show that δ and $\operatorname{pv}(1/x)$ are real, and that u' is real if u is real.
- **9** Let $u \in \mathscr{D}'(\mathbb{R})$ be the derivative, in the sense of distributions, of the function f defined by $f(x) = \ln x, x > 0$, and $f(x) = 0, x \le 0$. Determine u(ax), where a > 0. Is u a homogeneous distribution?
- *10 Let $H^1(\mathbb{R})$ be the linear subspace of $\mathscr{D}'(\mathbb{R})$ consisting of the $u \in \mathscr{D}'(\mathbb{R})$ for which there exist $u_0, u_1 \in L^2(\mathbb{R})$ such that $u = u_0$ and $u' = u_1$ in $\mathscr{D}'(\mathbb{R})$.
 - (a) Show that if $u \in H^1(\mathbb{R})$ then u is given by a continuous function.
 - (b) Show that $H^1(\mathbb{R})$, with inner product given by

$$(u,v) = \int_{\mathbb{R}} u_0(x)\overline{v_0(x)} \, dx + \int_{\mathbb{R}} u_1(x)\overline{v_1(x)} \, dx,$$

is a Hilbert space.