TATA66 Exercises, fourth set

Hand in solutions to six of the following ten exercises

*1 Show that the formula $\langle u, \varphi\rangle=\sum_{n=1}^{\infty}\left(\varphi\left(2^{-n}\right)-\varphi(0)\right)$, where $\varphi \in \mathscr{E}(\mathbb{R})$, gives a welldefined element u of $\mathscr{E}^{\prime}(\mathbb{R})$ and determine the support of u. Also determine if there exist constants C and m such that

$$
|\langle u, \varphi\rangle| \leq C \sum_{k=0}^{m} \sup _{x \in K}\left|\varphi^{(k)}(x)\right|, \quad \varphi \in \mathscr{E}(\mathbb{R})
$$

where K is equal to the support of u.
2 Show that the distribution on \mathbb{R} defined by the function $e^{2 x} \sin e^{x}$ is tempered.
$\mathbf{3}$ Let $u \in \mathscr{D}^{\prime}(\mathbb{R})$ and $\varphi \in \mathscr{D}\left(\mathbb{R}^{2}\right)$. Show that

$$
\left\langle u(x), \int_{0}^{\infty} \varphi(x, y) d y\right\rangle=\int_{0}^{\infty}\langle u(x), \varphi(x, y)\rangle d y .
$$

4 Let L be the differential operator $\frac{d^{2}}{d x^{2}}-3 \frac{d}{d x}+2$, and let $f(x)=a e^{x}+b e^{2 x}, x \geq 0$, and $f(x)=c e^{x}+d e^{2 x}, x<0$, where a, b, c, and d are constants.
(a) Find conditions on a, b, c, and d that are equivalent to the equality $L f=\delta$.
(b) Show that if $L f=\delta$ and $v \in \mathscr{E}^{\prime}(\mathbb{R})$, then $u=f * v$ is a solution to the differential equation $L u=v$.

5 Use the Fourier transform of $\sum_{n=-\infty}^{\infty} \delta_{n}$ to prove Poisson's summation formula:

$$
\sum_{n=-\infty}^{\infty} 2 \pi \varphi(2 \pi n)=\sum_{n=-\infty}^{\infty} \widehat{\varphi}(n), \quad \varphi \in \mathscr{S}(\mathbb{R}) .
$$

6 Determine the Fourier transform of the function $u(x)=\arctan x, x \in \mathbb{R}$. (Be sure to handle any division problems that arise carefully, as always.)

7 Let H be the linear operator defined on $\mathscr{S}(\mathbb{R})$ by $H \varphi=(1 / \pi) \operatorname{pv}(1 / x) * \varphi, \varphi \in \mathscr{S}(\mathbb{R})$. Show that $\|H \varphi\|_{2}=\|\varphi\|_{2}, \varphi \in \mathscr{S}(\mathbb{R})$.
*8 Let $u_{n}(x)=\left(x+\frac{i}{n}\right)^{-1}$, where $x \in \mathbb{R}$ and $n \geq 1$.
(a) Verify that $u_{n} \in L^{2}(\mathbb{R})$ and calculate $\widehat{u_{n}}$.
(b) Prove that $\widehat{u_{n}} \rightarrow-2 \pi i \chi$ in $\mathscr{S}^{\prime}(\mathbb{R})$ as $n \rightarrow \infty$. (χ is the step function.)
(c) Use the above to determine $\lim _{n \rightarrow \infty} u_{n}$ in $\mathscr{S}^{\prime}(\mathbb{R})$.
$* 9$ Let $u=\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}$ and for $n \geq 1$ let $u_{n}=u * u * \ldots * u$ (n factors).
(a) Express u_{n} as a sum of terms of the form $c \delta_{a}$ with $c, a \in \mathbb{R}$.
(b) Show that $\widehat{u}(\xi)=\cos \xi$ and that $\widehat{u_{n}}(\xi)=\cos ^{n} \xi$.
(c) Let $v_{n}(x)=\sqrt{n} u_{n}(\sqrt{n} x)$. Prove that $\widehat{v_{n}}(\xi) \rightarrow e^{-\xi^{2} / 2}$ in $\mathscr{S}^{\prime}(\mathbb{R})$ as $n \rightarrow \infty$.
(d) Use the above to determine $\lim _{n \rightarrow \infty} v_{n}$ in $\mathscr{S}^{\prime}(\mathbb{R})$.
*10 Show that the Maclaurin series $\sum_{k=0}^{\infty}(-1)^{k} x^{2 k} /(2 k)$! for $\cos x$ is convergent in $\mathscr{D}^{\prime}(\mathbb{R})$ but not in $\mathscr{S}^{\prime}(\mathbb{R})$.

