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General information

Ordinary Differential Equations and Dynamical Systems (TATA71) is an optional course for Mat2, Y4, M4,
EMM4. It is given in the second half of the fall semester (period ht2). All information is publicly available
on the course webpage courses.mai.liu.se/GU/TATA71/. Lisam is currently not used in this course.

Literature

D. K. Arrowsmith & C. M. Place, Dynamical Systems: Differential Equations, Maps, and Chaotic Behaviour
Chapman and Hall/CRC (1992), ISBN 9780412390807.

Prerequisites

Basic courses in single-variable and multi-variable calculus, plus linear algebra. (An honours course
in real analysis may be helpful for understanding certain subtle details, but that’s optional.)

Teaching

There will be 11 lectures and 11 lessons (problem-solving classes). See the lecture plan below.
As always, it is a good idea to read (or at least skim) the relevant sections in the textbook before each

lecture, and also to try out a few of the problems before each lesson, since there will usually not be time
enough to do all of them in the classroom.

Examination

The examination consists of two parts:

• UPG1. Homework assignments, worth 2 hp (= 2 ECTS credits).

Some of the exercises for the lessons are assigned as homework problems (underlined in the programme),
to be handed in continually during the course. These problems are only graded pass/fail, and if you fail a
problem, you simply hand in a corrected version later. It is allowed to discuss the problems with the teacher
and with your fellow students, but please write the solution in your own words, don’t just copy someone else’s
solution! Handwritten solutions are fine, and you can write them in English or in Swedish.

Since this is a small course with few participants, there is probably no need to set any strict deadlines, but
the idea is that the homework problems are a way of giving you feedback, so the sooner you hand them in,
the more useful they will be to you. And the intent is also that all problems should be completed before the
Christmas break.

• TEN1. A written test (5 hours), worth 4 hp.

The test contains 6 problems, each of which is graded as pass (3 or 2 points) or fail (1 or 0 points). The total
grade for the course is determined by the grade for the written test, which in turn is determined as follows: for
grade 3/4/5 (respectively), you need 3/4/5 passed problems and in addition at least 8/11/14 points in total.

1

http://courses.mai.liu.se/GU/TATA71/


What’s this course about?

As the name of the course suggests, we will study ODEs and dynamical systems.

• ODE is a standard abbreviation for ordinary differential equation, where the function that we
seek depends on one variable. So an ODE is just a good old differential equation like those which
you have already seen in your single-variable calculus course. We will also encounter systems of
ODEs, involving several unknown functions at once, but each function will still only depend on
one variable.

In contrast, a partial differential equation (PDE) is a differential equation where one seeks a
function depending on several variables, so that partial derivatives come into play.

• The idea of a dynamical system is rather broad, and it is hard to give a precise mathematical
definition which would cover every possible use of the phrase. But it refers to a “system” (whatever
that is) which changes in a deterministic way as time passes, and which is “memoryless” in the
sense that (at any given instant) the future of the system is uniquely determined by the present
state alone; the past is irrelevant.

We will usually assume when talking about dynamical systems that the laws governing the evolution
don’t change with time. That is, if we start the system in a given state T units of time from now,
we will get the same evolution as if we start it in that state right now (except that everything will
be delayed by T time units of course). If this needs to be emphasized, one uses the phrase auto-
nomous dynamical system – a system which “runs on its own”, in contrast to non-autonomous
dynamical systems where there may be some external time-dependent factors which influence the
evolution of the system.

The state of the system is represented mathematically by an element of a set called the state space,
typically Rn , or maybe some subset of Rn (like a cylinder, a sphere, or a torus). So one pictures the
evolution of the system as the motion of a point in phase space.

• A discrete-time dynamical system is one where things happen at distinct time steps. We can use
integers to label the time steps, so that the system is in the state xn ∈ S at time n ∈ Z, where S is the
state space. Then the evolution of the system is simply specified by some function f : S → S:

xn+1 = f (xn), n ∈ Z.

(The system is autonomous since the function f is the same for all n.)

Discrete-time dynamical systems are a very important part of the general theory of dynamical
systems, but will not be encountered very much in this course.

• In a continuous-time dynamical system, time passes smoothly, so we use real numbers to de-
scribe time, and talk about the system being in the state x(t ) at time t ∈ R. In this case, if the state
space is Rn for simplicity, the evolution is determined by a system of first-order ODEs for the state
x(t ) = (

x1(t ), . . . , xn(t )
)
:

d x1/d t = f1(x1, . . . , xn),

d x2/d t = f2(x1, . . . , xn),

...

d xn/d t = fn(x1, . . . , xn),

or simply dx/d t = f(x) for short, with x ∈ Rn and f : Rn → Rn . (The system is autonomous since the
function f doesn’t depend on t .)

In order for this to really define a dynamical system, we must impose suitable conditions on f
which will guarantee existence and uniqueness of the solution to the ODEs for a given initial
condition, so that the future is uniquely determined by the present state.
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Plan for lectures and lessons

Lecture 1. Basics of first-order ODEs 4

Lesson 1 6

Lecture 2. Phase portraits for two-dimensional systems 7

Lesson 2 8

Lecture 3. Two-dimensional linear systems 8

Lesson 3 9

Lecture 4. More about linear systems 10

Lesson 4 11

Lecture 5. Nonlinear systems, linearization at an equilibrium point 12

Lesson 5 13

Lecture 6. Stability theorems 14

Lesson 6 19

Lecture 7. Limit sets 20

Lesson 7 23

Lecture 8. Some applications 24

Lesson 8 25

Lecture 9. More about existence and uniqueness 25

Lesson 9 31

Lecture 10. Linear equations with non-constant coefficients 33

Lesson 10 39

Lecture 11. Outlook: Poincaré maps, attractors, chaotic systems 40

Lesson 11 40
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[Back to lecture plan]

Lecture 1. Basics of first-order ODEs

(Arrowsmith & Place, sections 1.1, 1.2. And your old calculus textbook, if needed.)

This lecture introduces some basic ideas:

• Existence and uniqueness theorems for first-order ODEs d x
d t = X (t , x).

Proposition 1.1.1 is usually called Peano’s existence theorem.

Proposition 1.1.2 is a slightly simplified version of the Picard–Lindelöf theorem. (The assumption
“∂X /∂x exists and is continuous” is stronger than necessary; we’ll study this more thoroughly later
in the course.)

• How to find explicit solutions in simple cases.

(This is mostly a question of remembering the methods you have learned in previous courses. See
summary below.)

• How to sketch the solution curves directly from the ODE.

• How to draw the phase portrait for a one-dimensional dynamical system.

A comment about notation

You might be used to ODEs looking something like this:

y ′′(x)+5y ′(x)+4y(x) = cos x (or simply y ′′+5y ′+4y = cos x),

where the independent variable is called x, and y = y(x) is the function that we seek. But since this
is a course about ODEs with a “dynamical systems perspective”, we will instead call the independent
variable t , for “time”, and use names like x(t) or y(t) for the sought functions. So the same ODE now
instead looks as follows:

x ′′(t )+5x ′(t )+4x(t ) = cos t or ẍ(t )+5ẋ(t )+4x(t ) = cos t .

(It is common to use dots instead of primes to denote derivatives with respect to time.)

Two very fundamental examples

• Exponential growth/decay:
x ′(t ) = r x(t ).

This is a linear equation, and we can solve it in several ways: integrating factor, characteristic
polynomial, separation of variables. Either way, the solution with initial condition x(0) = x0 is

x(t ) = x0 er t .

This will be encountered again and again in this course, and you will be expected to instantly
recognize this equation and know its solution. Phase portrait (if r > 0): “←− 0 −→”.

• The logistic equation with growth rate r and carrying capacity K :

x ′(t ) = r x(t )

(
1− x(t )

K

)
.

This nonlinear equation is often solved via separation of variables (followed by integration using
partial fractions), but an easier way is to use the substitution x(t ) = 1/y(t ), since this is a Bernoulli
equation. Solution, with x(0) = x0:

x(t ) = K x0

x0 + (K −x0)e−r t = K x0 er t

K + (er t −1)x0
.

Here you don’t need to memorize the solution formula, but you should know roughly what the
graph of the solution x(t ) looks like for different values of x0. (In particular, x(t ) = 0 and x(t ) = K
are constant solutions.) Phase portrait (if r > 0 and K > 0): “←− 0 −→ K ←−”.
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Summary of some exact solution methods

• Linear first order equations x ′+ax = b, where the coefficients a and b may be functions of the
time variable t :

x ′(t )+a(t ) x(t ) = b(t ).

How to solve: Find an antiderivative of a(t); call it A(t). Then multiply both sides of the ODE by
the integrating factor e A(t ), and use the product rule for derivatives (backwards). This gives(

e A(t ) x(t )
)′ = e A(t ) b(t ),

which can now be integrated.

• Separable equations f (x) x ′ = g (t ).

What this means is that we seek x(t ) such that

f (x(t )) x ′(t ) = g (t ).

Integrating this with respect to t , using the chain rule (backwards), we immediately obtain the
solution in the implict form

F (x(t )) =G(t )+C ,

where F (x) is some antiderivative of f (x) and G(t) is some antiderivative of g (t). Ususally this
is remembered via the trick of writing x ′ = d x/d t and “separating the variables” by “multiplying
by d t”, and then attaching integral signs:

f (x)
d x

d t
= g (t ) ⇐⇒

∫
f (x)d x =

∫
g (t )d t .

It’s sometimes convenient to use definite integrals instead, particularly if we want to find a solution
satisfying a given initial condition x(t0) = x0:∫ x(t )

x0

f (ξ)dξ=
∫ t

t0

g (τ)dτ,

or in other words
F (x(t ))−F (x0) =G(t )−G(t0).

As an important special case of separable equations we have one-dimensional dynamical systems
x ′ = a(x), which can always be solved by separation of variables:

x ′ = a(x) ⇐⇒ x(t ) = x∗ where a(x∗) = 0

or
∫

d x

a(x)
=

∫
d t = t +C .

Warning! This method is full of pitfalls! Don’t forget the case a(x) = 0; there is a constant solution
x(t ) = x∗ for each zero x∗ of the function a(x). And one should also be very careful with handling
logarithms and absolute values correctly when integrating and when simplifying the solution. And
in principle the constant of integration may be different in the different intervals into which the
real line is divided by the zeros of a(x). So if the ODE can be solved by some other method, it may
be wise to try that method first.

• Linear equations of arbitrary order:

x(n)(t )+an−1(t ) x(n−1)(t )+·· ·+a2(t ) x ′′(t )+a1(t ) x ′(t )+a0(t ) x(t ) = b(t ).

The general solution of such an equation has the structure

x(t ) = xhom(t )+xpart(t )
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where xpart(t) is a particular solution and xhom(t) is the general solution of the corresponding
homogeneous equation which has 0 instead of b(t ) on the right-hand side.

Solving higher-order equations with time-dependent coefficients is usually a rather hopeless task,
except that one may try to find solutions in the form of power series.

But it’s fairly easy in the special case of constant coefficients ak (t ) = ck :

x(n)(t )+ cn−1x(n−1)(t )+·· ·+c2x ′′(t )+ c1x ′(t )+ c0x(t ) = b(t ).

Then xhom(t ) can be found by looking at the roots of the characteristic polynomial

p(r ) = r n + cn−1 r n−1 +·· ·+c2r 2 + c1r + c0.

(If the roots are distinct and real, it’s easy. Repeated and/or complex roots are a bit harder.) To find
xpart(t ) one usually makes a suitable Ansatz. See your calculus book for details about all this.

• If we start with x ′(t)+ a(t) x(t) = b(t), which we know that we can solve using an integrating
factor, and let x(t) = 1/y(t)k (for some k 6= 0), we get x ′(t) = −k y ′(t)/y(t)k+1, and consequently
y(t ) satisfies the ODE

−k
y ′(t )

y(t )k+1
+a(t )

1

y(t )k
= b(t ),

that is,

y ′(t )− a(t )

k
y(t ) = b(t )

k
y(t )k+1

The conclusion is that if we encounter an equation of this form, a so-called Bernoulli equation

y ′(t )+p(t ) y(t ) = q(t ) y(t )n ,

then we can reduce it to a linear equation by letting x(t ) = 1/y(t )n−1.

• Later in this course we will thoroughly study linear first order systems

x′(t ) = A(t )x(t ),

where x(t ) = (
x1(t ), . . . , xn(t )

)T is a column vector of functions and A(t ) is matrix of size n ×n. But
you may already have seen in your linear algebra course how to solve such a system in the case
where A is a constant matrix which happens to be diagonalizable: set x = My, where the columns
of M are linearly independent eigenvectors of A, and you get a decoupled system y′(t) = D y(t),
where D is a diagonal matrix with the eigenvalues of A along the diagonal.

Lesson 1

The problems labelled A1, A2, etc., can be found in the section Additional problems just below. The
remaining problems (1.1, 1.2, etc.) are from the course textbook (Arrowsmith & Place), where they are
located at the end of each chapter. Problems marked with an asterisk might be a bit more challenging.

• Solving ODEs using calculus techniques: 1.1, 1.2, 1.4, A1, A2.

• Sketching solution curves directly from the ODE: 1.11.

• Drawing phase portraits: 1.12, 1.13.

• Phase portraits for parameter-dependent ODEs: 1.14, 1.17*.

• Recovering the ODE from the family of solution curves: A3.
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Additional problems for lesson 1

A1 Find the general solution of the following constant-coefficient second-order ODEs:

(a) ẍ +6ẋ +8x = t +2e−2t [Answer: x(t ) = Ae−2t +Be−4t + (4t −3)/32+ t e−2t .]

(b) ẍ +6ẋ +9x = 0 [Answer: x(t ) = (At +B)e−3t .]

(c) ẍ +6ẋ +10x = 2e−3t cos t [Answer: x(t ) = e−3t (A cos t +B sin t )+ te−3t sin t .]

A2 The Airy equation ẍ(t) = t x(t) is a second-order ODE with non-constant coefficients. Find the
solution which satisfies x(0) = 1 and ẋ(0) = 0, in the form of a power series x(t ) =∑∞

k=0 ak t k .

[Answer: x(t ) = 1+ t 3

2·3 + t 6

2·3·5·6 + t 9

2·3·5·6·8·9 + . . . ]

A3 A first-order ODE (usually) has a general solution constisting of a one-parameter family of curves.
Here’s an opposite problem: Find an ODE ẋ = X (t , x) such that the one-parameter family of curves
t 2 +x2 = 2C t are solution curves.

(Hint: Differentiate t 2 +x(t )2 = 2C t with respect to t , and eliminate the parameter C from the two
equations.)

[Answer: ẋ = (x2 − t 2)/2t x.]

Lecture 2. Phase portraits for two-dimensional systems

(Arrowsmith & Place, sections 1.3, 1.4, 1.5.)

Now we turn to two-dimensional dynamical systems

ẋ1 = X1(x1, x2), ẋ2 = X2(x1, x2),

where we assume that the functions X1 and X2 are nice enough to guarantee (local) existence and
uniqueness of solutions. In vector notation: ẋ(t) = X(x(t)), or simply ẋ = X(x). The function X should
be thought of as a vector field in phase space: a vector X(x) is prescribed at each point x. The solution
curves for the system are curves x = x(t ) whose tangent vector ẋ agrees with the prescribed vector X(x) at
each point on the curve. The solution curves are sometimes called flow lines of the vector field.

• In very simple cases, we can solve the system explicitly. Sometimes we can obtain partial informa-
tion by methods of calculus.

• But we can also get at least a rough idea of what the phase portrait looks like by direct inspection
of the signs of the functions X1(x1, x2) and X2(x1, x2).

• Syntax for drawing phase portraits in Mathematica or Wolfram Alpha (www.wolframalpha.com):

StreamPlot[X1(x, y), X2(x, y), {x, xmin, xmax}, {y, ymin, ymax }]

For example:

StreamPlot[-1-x^2+y, 1+x-y^2, {x, -3, 3}, {y, -3, 3}]

(But don’t expect an automatic command like this to produce anything nearly as good as the
hand-tuned graphics in the textbook.)

• Arrowsmith & Place use the phrase fixed point for a point x∗ such that X(x∗) = 0, but I will usually
say equilibrium point or just equilibrium, and you may come across many other synonyms too:
rest point, critical point, steady state, etc.

The reason for the terminology is of course that x(t) = x∗ is a constant solution of the system
ẋ = X(x) in this situation. That is, a system starting in the state x∗ remains in the state x∗ forever.
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[Back to lecture plan]

• The evolution operator or flow ϕ is the function which maps each point x in phase space to the
place where it will be t units of time later if moving as prescribed by the dynamical system. It is
denoted by ϕt (x) in the book, but it’s also common to write ϕ(t , x), since it is simply a function of t
and x.

A fact which isn’t mentioned in the textbook is that the flowϕ is as “nice” as the vector field X. More
precisely, there’s a theorem which says that if the system is

ẋ = X(x,λ),

whereλ= (λ1, . . . ,λN ) is some vector of parameters, and if X is of class C k (1 ≤ k ≤∞) as a function
of the variables (x,λ), then the flow ϕ is of class C k as a function of the variables (t ,x,λ).

Lesson 2

Underlined problems are homework problem to be handed in.

• Finding fixed points: 1.19ac.

In these problems, also find the nullclines (the curves where ẋ1 = 0 or ẋ2 = 0) and use this to draw
the regions of the phase plane where ẋ1 and ẋ2 are positive/negative).

• And another one for homework: 1.19d (including the follow-up question above about nullclines
and signs of ẋ1 and ẋ2.)

• Drawing families of parametrized curves and finding the corresponding ODEs: 1.20.

• Exact solution of a linear systems: 1.23 (draw the phase portrait both in the y1 y2-plane and in the
x1x2-plane).

• An easy verification: 1.24.

• A nonlinear system which can be solved using polar coordinates: 1.25.

• Flows: 1.32, 1.36.

(Hint for 1.32, if you want to solve it from scratch: it’s a Bernoulli equation, let y = 1/x2. Or just
use separation of variables and partial fractions directly. Or else verify that the flow is correct, by
computing d

d t ϕt (x0).)

Lecture 3. Two-dimensional linear systems

(Arrowsmith & Place, sections 2.1, 2.2, 2.3.)

We will spend some time on understanding linear dynamical systems in two dimensions:

ẋ1 = ax1 +bx2

ẋ2 = cx1 +d x2
⇐⇒

(
ẋ1

ẋ2

)
=

(
a b
c d

)
︸ ︷︷ ︸

=A

(
x1

x2

)
.

• Definition of a simple linear system: det(A) = ∣∣a b
c d

∣∣ = ad − bc is nonzero. (Equivalently: the
eigenvalues of A are nonzero.) This implies that the origin (x1, x2) = (0,0) is the only equilibrium
point. In this lecture we’ll only consider simple systems.

• A linear change of variables x = My turns the system ẋ = Ax into ẏ = M−1 AMy.

• “Recipe” for choosing the columns m1 and m2 in the matrix M so that J = M−1 AM simplifies to
the Jordan normal form of A:
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(a) Suppose A has two distict real eigenvaluesλ1 >λ2. Taking m1 and m2 to be the corresponding

eigenvectors gives J =
(
λ1 0
0 λ2

)
.

(b) Suppose A has a double real eigenvalue λ0. Then either A =
(
λ0 0
0 λ0

)
is already in normal

form, or else there is just a one-dimensional eigenspace; in this case let m1 be an eigenvector
and take any vector not parallel to m1 as our preliminary m2. This will give a preliminary

J =
(
λ0 C
0 λ0

)
with some nonzero constant C . Adjust m2 by dividing it by this constant C ; this

will give the Jordan form J =
(
λ0 1
0 λ0

)
.

(c) Suppose A has a complex-conjugated pair of eigenvalues λ1,2 =α± iβ with β> 0.

This case is done in a very complicated way in the book (p. 39)! A much simpler way is
to let a+ i b (with a and b real) be a complex eigenvector corresponding to the eigenvalue

λ1 =α+ iβ. Then m1 = b and m2 = a will work, and directly give the Jordan form J =
(
α −β
β α

)
.

(These vectors are automatically linearly independent – otherwise they would both be real
eigenvectors of the real matrix A, with a non-real eigenvalue λ1, impossible.)

• How to solve the system ẏ = Jy with a matrix in Jordan form, and how to draw its phase portrait.

In case (a) the phase portrait is a node or a saddle depending on the signs of the eigenvalues. In
case (b) it is a star node or an improper node. And in case (c) it is a spiral (also called focus) if
α 6= 0, or a centre if α= 0.

The phase portrait for x = My will be of the same type, only distorted by the linear transformation M .
The columns m1 and m2 give the principal directions of the phase portrait.

• A solution method which isn’t mentioned in the book, but is sometimes convenient, is to rewrite
the system as a single second-order ODE with constant coefficients, as follows. The derivative of
ẋ1 = ax1 +bx2 is

ẍ1 = aẋ1 +bẋ2.

The second term here, bẋ2, can be rewritten using the equations from the system:

bẋ2 = b(cx1 +d x2) = bcx1 +d(bx2) = bcx1 +d(ẋ1 −ax1) = d ẋ1 − (ad −bc)x1.

So we find that ẍ1 = aẋ1 +
(
d ẋ1 − (ad −bc)x1

)
, or in other words

ẍ1 − (a +d)ẋ1 + (ad −bc)x1 = 0.

This second-order ODE for x1(t ) can now be solved as in calculus, with the help of its characteristic
polynomial

p(λ) =λ2 − (a +d)λ+ (ad −bc),

which (perhaps not surprisingly) coincides with the characteristic polynomial of the system’s
matrix A, as we can easily check:

p(λ) = det(A−λI ) =
∣∣∣∣a −λ b

c d −λ
∣∣∣∣= (a −λ)(d −λ)−bc =λ2 − (a +d)λ+ (ad −bc).

And once x1(t) is known, we also get x2(t) from x2 = (ẋ1 −ax1)/b, assuming that b 6= 0. (If b = 0,
the system is easy to solve right away: the first equation ẋ1 = ax1 +0x2 gives x1(t ) = x1(0)eat ; plug
this into the second equation and solve it using an integrating factor or (x2)hom + (x2)part.)

Lesson 3

• A little reminder of how linear transformations work: 2.1.

• Transformation to canonical form: 2.3, 2.4.

• Solving canonical linear systems (and drawing the phase portrait): 2.8, 2.9.
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Lecture 4. More about linear systems

(Arrowsmith & Place, sections 2.4, 2.5, 2.6, 2.7.)

• How to tell directly from the coefficients of the matrix A = (
a b
c d

)
what the type of the phase portrait

for ẋ = Ax is, without computing the eigenvalues: compute the trace and the determinant,

β= tr(A) = a +d , γ= det(A) = ad −bc,

and locate the point (β,γ) in the following diagram (cf. Figure 2.7 in the book):

β= tr(A)

γ= det(A)

non-simple system

centre
stable star or improper node unstable star or improper node

γ= (β/2)2

saddle saddle saddle

stable node unstable node

stable spiral unstable spiral

For systems on the parabola γ= (β/2)2, the type is a star node if the matrix A equals a constant
times the identity matrix, otherwise it’s an improper node.

Centres are always stable, and saddles are always unstable (according to the general definitions of
“stable equilibrium” and “unstable equilibrium” that will be given later in the course).

• In particular, the zeros of the polynomial p(z) = z2 −βz +γ both have negative real part if and
only if the coefficients satisfy β< 0 and γ> 0, i.e., if the point (β,γ) lies in the second quadrant
in the diagram above. (By the way, this is a special case of the Routh–Hurwitz criterion, which
determines for a polynomial of arbitrary degree whether all its zeros have negative real part.)

• The word “type” above refers to a kind of “algebraic type”, two linear systems being of the same
type if and only if they are related via a linear change of variables. Such changes preserve the
eigenvalues, so (for example) an unstable node with λ1 = 5 and λ2 = 3 cannot be transformed into
an unstable node with λ1 = 43 and λ2 = 17.

We might want to introduce some looser type of equivalence instead, which will allow (for example)
any two unstable nodes to be considered equivalent.

• Classification of qualitatively equivalent types of phase portraits for two-dimensional simple
linear systems. Under this equivalence relation (Definition 2.4.1) there are only four different
types:

(a) Stable node, star node, improper node or spiral. (“Stable but not centre.”)

(b) Centre.

(c) Saddle.

(d) Unstable node, star node, improper node or spiral. (“Unstable but not saddle.”)
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(One subtle detail regarding Definition 2.4.1: They say that two systems are qualitatively equivalent if there is
a continuous bijection f which maps the phase portrait of one system onto the phase portrait of the other
and preserves the orientation of the trajectories. But how do we know that this relation is symmetric? (If
system A is equivalent to system B , then we want system B to be equivalent to system A as well.) For this to
hold, the inverse f −1 must also be a continuous bijection. This isn’t necessarily true for continuous bijections
in general; consider for example the function from the interval (−π,π] in R to the unit circle in R2 given
by f (t) = (cos t , sin t). But there is a famous and rather difficult theorem by Brouwer which says that for a
continuous bijection between two open sets in Rn the inverse is automatically continuous, so the definition
is actually correct as it stands.)

• Qualitative equivalence is also called topological equivalence.

(A stronger condition is C k -equivalence, where one requires the map f and its inverse f −1 to be
of class C k instead of just continuous.)

• As an aside, we may also mention the slightly different notion of conjugacy, where one also requires
the time parametrization of the trajectories to be respected. More precisely, two systems with flows
ϕ and ψ are said to be topologically conjugate if there’s a continuous map f with continuous
inverse f −1 such that

f ◦ϕt =ψt ◦ f

for all t . That is, following the flow ϕ of one system for t units of time and then mapping over to
the other phase portrait is always the same as first mapping to the other phase portrait and then
following that flow ψ for t units of time.

(And the systems are C k -conjugate if f and f −1 are of class C k .)

For example, a system whose phase portrait consists of concentric circles all traversed with the
same period T is topologically equivalent to a system whose phase portrait consists of concentric
circles traversed with different periods, but the systems are not topologically conjugate.

• The exponential function for square matrices P :

eP = exp(P ) = I +P + 1

2!
P 2 + 1

3!
P 3 + . . .

• The solution to ẋ = A x is
x(t ) = e At x(0).

(Here it’s important that A is a constant matrix, not time-dependent.)

• Affine systems ẋ = A x+h(t ), also called non-homogeneous linear systems.

It’s easy if h is time-independent and Ax0 = h for some x0: just set y(t ) = x(t )+x0 to get ẏ = Ay. But
even if this doesn’t hold, an affine system can be solved using e−At as an integrating factor.

• Linear systems and Jordan form in n dimensions.

Lesson 4

• Using the trace–determinant criterion: 2.13.

• Phase portrait via change of variables: 2.14.

• Computing matrix exponentials: 2.22, 2.23ab, 2.23cd.

• Affine systems: 2.29abcd, 2.30.

• A three-dimensional linear system: 2.33.

• Solution corresponding to a 4×4 Jordan block: 2.35a.
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Lecture 5. Nonlinear systems, linearization at an equilibrium point

(Arrowsmith & Place, sections 3.1, 3.2, 3.3, 3.4.)

Now back to nonlinear systems ẋ = X(x), in the plane R2 for simplicity, but the results are valid in Rn too.
We assume that the vector field X(x) is of class C 1, so that we have existence and uniqueness of solutions;
this assumption is also needed for the linearization theorem below to be valid.

• Suppose that x∗ = (a1, a2) is an equilibrium point: X1(a1, a2) = X2(a1, a2) = 0. Since the functions
X1 and X2 are assumed to be of class C 1, they are also differentiable, which by definition means
that

X1(a1 +h1, a2 +h2) = X1(a1, a2)︸ ︷︷ ︸
=0

+ X1

∂x1
(a1, a2)h1 + X1

∂x2
(a1, a2)h2 + remainder,

X2(a1 +h1, a2 +h2) = X2(a1, a2)︸ ︷︷ ︸
=0

+ X2

∂x1
(a1, a2)h1 + X2

∂x2
(a1, a2)h2 + remainder,

where the remainders tend to zero faster* than
√

h2
1 +h2

2 as (h1,h2) → (0,0).

• If we discard the remainders, we get a linear system for h(t ) = x(t )−x∗:

ḣ1 = X1

∂x1
(a1, a2)h1 + X1

∂x2
(a1, a2)h2,

ḣ2 = X2

∂x1
(a1, a2)h1 + X2

∂x2
(a1, a2)h2,

or in matrix notation,

ḣ = ∂X

∂x
(x∗)︸ ︷︷ ︸

=A

h.

This system is called the linearization of the original system at the equilibrium point x∗. Its
matrix A is the Jacobian matrix of X(x), evaluated at the equilibrium point x∗ (so it’s really just a
constant matrix).

• Our hope is that the linear system ḣ = Ah (which we know how to analyze completely) will tell us
something about the behaviour of the original nonlinear system ẋ = X(x) near the point x∗.

And this is indeed the case, provided that x∗ is a hyperbolic† equilibrium point, meaning that the
Jacobian matrix A = ∂X

∂x (x∗) has no eigenvalues on the imaginary axis in the complex plane.

Under that condition, Theorem 3.3.1 (the linearization theorem) says that the nonlinear system
ẋ = X(x) is indeed topologically equivalent‡ to its linearization ḣ = Ah in a neighbourhood of x∗.

In terms of the trace-determinant diagram of A = ∂X
∂x (x∗):

*What this means is that the quotient R(h,k)/
√

h2 +k2 tends to zero, where R(h,k) is the remainder.
†The word “hyperbolic” is very over-used in mathematics, and it is perhaps not a very good choice in this context, but

unfortunately it has become standard terminology. Arrowsmith & Place avoid this word initially, and express the condition by
saying that the linearized system should be simple (λ= 0 is not an eigenvalue) and not a centre (we don’t have λ= 0± i k either).
But they introduce it a little later, on p. 80.

‡ Actually, it’s even topologically conjugate, but the book doesn’t introduce that concept.
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β= tr(A)

γ= det(A)

no conclusion!

no conclusion!

saddle saddle saddle

stable unstable (and not saddle)

The linearization theorem is also called the Hartman–Grobman theorem, proved independently
by Philip Hartman in the U.S.A. and D. M. Grobman in the Soviet Union around 1960. The proof is
rather difficult, and way beyond the scope of this course.§

(However, a simpler theorem, not dealing with topological equivalence but only with determining
stability based on linearization, can be proved using Liapunov’s theorems that we will learn about
in the next lecture.)

Lesson 5

• Linearization: 3.5 (3.5eg), 3.6, 3.7 (3.7b).

• An isolated, but non-simple, fixed point: 3.8.

• Non-isolated fixed points: 3.11.

(To avoid confusion: here “a line of fixed points” rather means a curve.)

• An explicit example of a topological conjugacy: A4*.

• An example regarding smoothness in the Hartman–Grobman theorem: A5*.

Additional problems for lesson 5

A4 Find a topological conjugacy (u, v, w) = h(x, y, z) between the nonlinar system

ẋ =−x, ẏ =−y +xz, ż = z

and the corresponding linearized system at the origin,

u̇ =−u, v̇ =−v, ẇ = w.

[Answer: For example, h(x, y, z) = (x, y−xz, z) works (and it’s actually even a global diffeomorphism,
not just a local homeomorphism).]

§For two-dimensional systems, a stronger result holds (also proved by Hartman): if the vector field X(x) is of class C 2, then the
nonlinear system is actually C 1-conjugate (not just topologically conjugate) to its linearization, and moreover the derivative of the
conjugating map at the origin is the identity. This means, for example, that if the linearization is a saddle, the eigenvectors will tell
us the correct incoming and outgoing directions of the trajectories of the nonlinear system.

It is not true in three or more dimensions that we can always get C 1-conjugacy. However, it is true (as was proved as recently as
2003) that the continuous conjugation map is differentiable at the origin, with the derivative there equal to the identity. (The proof
assumes that X(x) is of class C∞, but the claim is conjectured to be true already for class C 2.)

It’s also not true (even in two dimensions) that one can get C k -conjugacy with k ≥ 2 by assuming the vector field to be nicer; see
problem A5 for a counterexample with a vector field of class C∞ where one doesn’t get more than C 1-conjugacy.

13
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A5 Solve the system ẋ = −x, ẏ = −2y + x2 exactly and draw the phase portrait. Eliminate t to get
expressions y = y(x) for the solution curves; what degree of smoothness do they have at the
origin? Compare to the solution of the linearized system ẋ =−x, ẏ =−2y . Are the phase portraits
C 2-equivalent?

Lecture 6. Stability theorems

(Arrowsmith & Place, sections 3.5, 3.6, 3.7.)

• Definitions 3.5.1–4: The definition of a stable equilibrium (sometimes called Liapunov stable).
Some stable equilibria are asymptotically stable. And those which are stable but not asymptot-
ically stable are called neutrally stable. So there are exactly those two types of stable equilibria.
Unstable equilibrium simply means an equilibrium which is not stable.

• Russian names can be translitered into the Latin alphabet in many ways. Here I’m writing Liapunov
like in the textbook, but a very common alternative in English is Lyapunov, and one may also
come across Ljapunow, Liapounoff, and so on. Anyway, it’s pronounced with the stress on the last
syllable: “-OFF”.

• Theorem 3.5.1 is Liapunov’s stability theorem (1892).

This theorem is useful for showing stability in situations where linearization is inconclusive.
Even more importantly, it also provides a domain of stability; that is, a neighbourhood N of an
asymptotically stable equilibrium x∗, such that any solution which starts in N stays in N and
converges to x∗ as t →∞. (From linearization we can only say that if all eigenvalues have negative
real part, then there is some domain of stability, but we don’t get any clue about the size of that
domain.)

However, Arrowsmith & Place don’t state exactly how to find a domain of stability, and their proof
of the theorem is also rather unclear. I will try to give more precise statements here.

First let us fix some terminology.

Definition. Let I be a proper* interval in R, and let f be a real-valued function whose domain of
definition contains I . The function f is said to be strictly decreasing on I if

f (t1) > f (t2)

whenever t1 ∈ I , t2 ∈ I and t1 < t2. It is weakly decreasing on I if

f (t1) ≥ f (t2)

whenever t1 ∈ I , t2 ∈ I and t1 < t2.

Remark. Any function which is strictly decreasing is weakly decreasing as well.

Remark. In English, it is more common to say decreasing and non-increasing instead of strictly
decreasing and weakly decreasing, but I have chosen the latter option here to reduce the risk
of confusion with the usual terminology in Swedish, which is strängt/strikt avtagande and av-
tagande, respectively. (And similarly in German and French.)

From now on we consider some fixed dynamical system ẋ = X(x) in Rn , where the vector field X is
defined in some open set S ⊆ Rn , and we assume that V : Ω→ R is a differentiable function defined
on some open setΩ⊆ S. (And of course we assume thatΩ and S are not the empty set, since that
wouldn’t be very interesting.)

* A proper interval is an interval (in R) which contains infinitely many points, as opposed to the degenerate intervals [a, a] = {a}
and ;= { }.
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Definition. The function V̇ : Ω→ R is the dot product of the gradient ∇V and the vector field X:

V̇ (x) =∇V (x) ·X(x), x ∈Ω.

Theorem. Suppose V̇ (x) < 0 for all x ∈Ω. Then, for any solution x(t ) of the system which stays in
the setΩ during some nonempty open time interval I , the function

f (t ) =V (x(t )), t ∈ I

is strictly decreasing on I . If instead V̇ (x) ≤ 0 for all x ∈Ω, then f is weakly decreasing on I . And if
V̇ (x) = 0 for all x ∈Ω, then f is constant on I .

Proof. The chain rule gives

f ′(t ) =∇V (x(t )) · ẋ(t )

=∇V (x(t )) ·X(x(t )) = V̇ (x(t )), t ∈ I .

So if we know that V̇ < 0 everywhere inΩ, and that x(t ) stays inΩ for t ∈ I , then we have f ′(t ) < 0
for t ∈ I , which implies that f is strictly decreasing on I (by a very basic calculus theorem). Similarly
if V̇ ≤ 0 or V̇ = 0.

Theorem (Liapunov’s stability theorem, weak version). Let x∗ be an equilibrium point of the
dynamical system ẋ = X(x), x ∈ S ⊆ Rn . Suppose that there is a weak Liapunov function, i.e., a
differentiable function V : Ω→ R defined on some open setΩ⊆ S containing x∗ and satisfying the
conditions

1. V (x∗) = 0 and V (x) > 0 for all x ∈Ω\ {x∗},

2. V̇ (x) ≤ 0 for all x ∈Ω.

Then the equilibrium x∗ is stable.

Remark. As the theorem is formulated, the function V : Ω→ R has exactly the setΩ as its domain
of definition. Usually we have some nice function V (typically a polynomial) which is defined
everywhere to begin with. What we actually do then is that we compute V̇ , use that to locate some
open setΩwhere the assumptions of the theorem are fulfilled, and then apply the theorem with V
equal to the restriction of the original function V to the setΩ.

Outline of proof. If U is any neighbourhood of x∗, let B ⊂U ∩Ω be a closed ball centered at x∗ and
set

U ′ = {
x ∈ B : V (x) <α}

,

where α > 0 is the minimum of V on the boundary sphere ∂B . Then U ′ ⊂ B ⊂ U , and U ′ is a
neighbourhood of x∗ such that trajectories starting in U ′ can’t leave U (in fact, they can’t even
leave U ′).

Detailed proof. Let U be an arbitrary neighbourhood of x∗. To prove stability, we need to find
another neighbourhood U ′ such that solutions starting in U ′ will never leave U . To find U ′ we
begin by taking a closed ball

B = B(x∗,ε) = {
x ∈ Rn :

∣∣x−x∗
∣∣≤ ε}

centered at x∗, with radius ε> 0 small enough for B to be contained inside both U andΩ. (This is
possible since U andΩ are neighbourhoods of x∗.) The boundary

∂B = {
x ∈ Rn :

∣∣x−x∗
∣∣= ε}

15
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is a sphere of radius ε centered at x∗. This sphere is a compact set (closed and bounded), and V
is continuous by assumption, so according to the extreme value theorem V has a smallest value
on ∂B :

α= min
x∈∂B

V (x).

In other words, there is a point x0 ∈ ∂B such that

α=V (x0) ≤V (x) for all x ∈ ∂B .

Since V is positive definite onΩ and we have chosen B small enough to be a subset ofΩ, we have
V (x) > 0 for all x ∈ ∂B , in particular

α=V (x0) > 0.

Now set
U ′ = {

x ∈ B : V (x) <α}
.

Then U ′ contains x∗, since V (x∗) = 0 <α. And U ′ is an open set, since V is continuous.† In other
words, U ′ is an open neighbourhood of x∗. Moreover, a trajectory x(t ) starting in U ′ (at t = 0, say)
can’t leave U . Here’s why: to leave U , the trajectory would have to leave B to begin with (since
U ′ ⊂ B ⊂U ), and it’s a continuous curve so it would have to intersect the boundary sphere ∂B in
order to get out. But f (t) =V (x(t)) is a weakly decreasing function of t as long as x(t) stays in B
(since B ⊂Ω, and V̇ ≤ 0 inΩ by assumption). Since we start in U ′, we have f ′(0) <α, and hence
f (t ) <α for t ≥ 0. So it’s impossible for the trajectory to reach ∂B , since that would mean f (t ) ≥α
for some t > 0. (In fact, the trajectory can’t even leave U ′ – as soon as it did, it would mean that
f (t ) ≥α.)

(One more technical detail: since the trajectory stays inside the compact set B , it must exist for all
t ≥ 0; there can’t be any “blowup in finite time”. We haven’t proved that theorem in this course, so
we’ll just accept this fact on faith here.)

Theorem (Liapunov’s stability theorem, strong version). Let x∗ be an equilibrium point of the
dynamical system ẋ = X(x), x ∈ S ⊆ Rn . Suppose that there is a strong Liapunov function, i.e., a
differentiable function V : Ω→ R defined on some open setΩ⊆ S containing x∗ and satisfying the
conditions

1. V (x∗) = 0 and V (x) > 0 for all x ∈Ω\ {x∗},

2. V̇ (x) < 0 for all x ∈Ω\ {x∗}.

Then the equilibrium x∗ is asymptotically stable. In fact, for any closed ball B = B(x∗,r ) contained
inΩ, the set

N = {
x ∈ B : V (x) <α}

, where α= min
x∈∂B

V (x),

is a domain of stability: solutions starting in N stay in N , and converge to x∗ as t →∞.

Remark. IfΩ= Rn and if the additional condition

V (x) →∞ as |x|→∞

holds, then for any given point x0 ∈ Rn it is true that

min
x∈∂B

V (x) >V (x0)

if we take B large enough. This means that x0 ∈ N for that choice of B , causing the trajectory
starting at x0 to converge to x∗. So in this case x∗ is stable and every trajectory of the system
converges to x∗, which is expressed by saying that x∗ is globally asymptotically stable.

† Take any x ∈ U ′, or in other words any x ∈ B with V (x) < α. Then actually x is in the interior of B , since V ≥ α on the
boundary ∂B . Continuity of V at x means that there is an open ball B2 = B(x,δ) where V <α, and this ball must also be contained
in the interior of B , for the same reason. So B2 ⊆U ′. Thus any x ∈U ′ has an open neighbourhood contained in U ′, and this is
exactly what it means for U ′ to be open.
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Remark. If one studies the proof, it should be clear that the set B in the definition of N doesn’t really
have to be precisely a closed ball, just something which is topologically equivalent to a ball. For
example, if our Liapunov function is V (x, y) = x6+y4, then for k > 0 the sublevel set B = {x6+y4 ≤ k}
is sufficiently “ball-like” for the proof to work: no continuous curve can pass from the interior to
the exterior without crossing the closed level curve ∂B = {x6 + y4 = k}. The same arguments as in
the proof then show that trajectories can’t leave the set N = {x ∈ B : V (x, y) < k} = {x6 + y4 < k}, so
provided that B is contained in the regionΩ, N is a domain of stability for the equilibrium (0,0).

Outline of proof. Stability follows from the weak version of Liapunov’s theorem. Any trajectory
starting in N must stay in N , and along such a trajectory the function V decreases strictly towards
some limit L ≥ 0. But L > 0 would contradict the continuity of the flow ϕt , so L = 0, which in turn
implies that the trajectory converges to x∗ (the only point where V = 0).

Detailed proof. Stability follows from the weak version of Liapunov’s theorem. As in the proof
of that theorem, we see that N (as defined above) is an open neighbourhood of x∗, and that any
trajectory x(t ) starting in N stays in N and is defined for all t ≥ 0. For the constant solution x(t ) = x∗
there is nothing to prove – of course it converges to x∗! So suppose x(t) is some other solution
starting in N . Then, by the assumption V̇ < 0, V (x(t)) is strictly decreasing function of t on the
interval t ≥ 0, and it’s bounded below (since V ≥ 0), so it has a limit L ≥ 0 as t →∞.

We want to show that L = 0, so assume L > 0 in order to get a contradiction. Take any sequence of
positive numbers tn ↗∞; then xn = x(tn) is a sequence of points in the compact set B . According
to the Bolzano–Weierstrass theorem, a standard theorem about compact sets in Rn , this sequence
of points must have a convergent subsequence, i.e., there is a point y ∈ B and an integer sequence
nk ↗∞ such that xnk → y as k →∞. Since V is continuous, we can move the limit outside V and
obtain

V (y) =V

(
lim

k→∞
xnk

)
= lim

k→∞
V (xnk ) = L.

We are assuming L > 0, which means that y 6= x∗ (since V is positive definite), and V will thus
continue to decrease strictly along the trajectory starting at y. So the flow ϕ1, for example (or ϕt

for any fixed t > 0), will map y to a point where V < L. But ϕ1 is a continuous function, so it will
also map all sufficiently nearby points xnk to points where V < L:

V (ϕ1(xnk )) =V (x(1+ tnk )) < L, for all sufficiently large k.

But we know that V (x(t)) > L for all t ≥ 0, since V (x(t)) is decreasing towards the limit L. This
contradiction shows that the assumption L > 0 must have been incorrect. Hence L = 0.

Now we know that V (x(t)) ↘ L = 0 as t →∞. It remains to show that this implies x(t) → x∗, i.e.,
that for any ε> 0 there is a time τ such that x(t) ∈ Bε for all t > τ, where Bε = B(x∗,ε) is the open
ball of radius ε centered at x∗. We may assume that 0 < ε< r , where r is the radius of the closed
ball B . Then

B \ Bε = B(x∗,r ) \ B(x∗,ε)

is a compact nonempty set, so the continuous function V has a smallest value β on this set (and
β> 0 since V is positive definite). What this means is that if x ∈ B and V (x) <β, then x ∈ Bε. But we
have x(t ) ∈ B for all t ≥ 0, and since V (x(t )) ↘ 0 as t →∞ there is a τ such that V (x(t )) <β for t > τ.
Consequently x(t ) ∈ Bε for t > τ, as desired.

• The very useful Theorem 3.5.2 is an improvement of Liapunov’s theorem which is due to LaSalle
(1960). It allows us to conclude asymptotic stability using only a weak Liapunov function, provided
an additional condition is satisfied. The proof is not given in the book, but it is a consequence of
something called LaSalle’s invariance principle (see the next lecture).
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Theorem (LaSalle’s stability theorem). Let x∗ be an equilibrium point of the dynamical system
ẋ = X(x), x ∈ S ⊆ Rn . Suppose that there is a weak Liapunov function V : Ω→ R on some open set
Ω⊆ S containing x∗, and in addition suppose that the set{

x ∈Ω : V̇ (x) = 0}

contains no complete trajectory except the constant solution x∗.

Then the equilibrium x∗ is asymptotically stable, and N (defined as in the strong version of
Liapunov’s theorem) is a domain of stability.

(And ifΩ= Rn and V (x) →∞ as |x|→∞, then x∗ is globally asymptotically stable.)

Proof. See the next lecture.

• Here is a somewhat subtle point concerning the above theorems and weak Liapunov functions. If
we have a function V which is everywhere defined and nice (continuously differentiable), then the
setΩ1 =

{
x ∈ Rn : V̇ (x) ≤ 0

}
will be closed. But the theorems, as they are formulated above, require

us to restrict V to an open set Ω. So we have to shrink Ω1 “by hand” to get an open set Ω where
V̇ ≤ 0 holds. The purpose of this, as well as all the business with closed balls contained insideΩ, is
to avoid accidentally making plausible-sounding claims which are actually false. We know that V
is weakly decreasing along trajectories, but only as long as they stay inΩ, so we need to take some
precautions to prevent the trajectories from sneaking out ofΩ!

Example. If the system is ẋ = y , ẏ =−x − y(1−x2), and if V (x, y) = x2 + y2, then V̇ =−2y2(1−x2).
Thus, the set Ω1 = {V̇ ≤ 0} is the union of the closed strip −1 ≤ x ≤ 1 and the line y = 0. So any
trajectory will be moving closer to the origin (or at least not further away from it) as long as it is
inside the strip, but trajectories for y > 3 (or so) will enter the strip from the left, leave it again
on the right (a little further down), and then go off steeply upwards towards infinity instead of
converging towards the equilibrium (0,0). So for example, a set like {(x, y) ∈Ω1 : V (x, y) ≤ 100} is
not forward invariant despite V being weakly decreasing on trajectories in Ω1! But we can take
Ω to be the open strip −1 < x < 1, let B be any closed ball x2 + y2 ≤ k with 0 < k < 1 so that it
fits inside Ω, and then the set N given by x2 + y2 < k will be a domain of attraction by LaSalle’s
theorem, since there are no trajectories contained in the line y = 0 except the equilibrium solution
(x(t ), y(t )) = (0,0). And since this is true for any 0 < k < 1, in fact the open unit disk x2 + y2 < 1 is a
domain of attraction.‡

• Theorem 3.5.3 is Liapunov’s instability theorem.

• We have relied upon the rather deep Hartman–Grobman theorem to show that an equilibrium is
asymptotically stable if the linearization there is asymptotically stable. This fact can be proved
more directly using Liapunov’s stability theorem. The simplest case is when the Jacobian ma-
trix A = ∂X

∂x (x∗) has distinct real eigenvalues (assumed negative, in order for dh/d t = A h to be
asymptotically stable):

0 >λ1 > ·· · >λn .

Make the usual linear change of coordinates x = My, where the columns of M form a basis of
eigenvectors of A. In terms of these coordinates, we have a system ẏ = Y(y) with an equilibrium y∗
where the Jacobian is diagonal:

J = ∂Y

∂y
(y∗) = diag(λ1, . . . ,λn).

‡We can actually do yet a little better: the closed unit disk x2 + y2 ≤ 1 is forward invariant since the open unit disk is; this follows
from the continuity of the flow, since if ϕt (for some t > 0) would map some point on the unit circle to a point outside the circle,
then by continuity it would also have to map some nearby point inside the circle out of the circle, which we know it doesn’t. So the
closed unit disk is compact and forward invariant, and then we can try applying LaSalle’s invariance principle (see next lecture) to
it. This turns out to be successful (exercise), so actually the closed unit disk is a domain of attraction.
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So k = y−y∗ satisfies
k̇ = J k+ remainder,

where the remainder tends to zero faster than |k|. It’s not too difficult to check that V (k) =∑
k2

i is
a strict Liapunov function for this system in a neighbourhood of k = 0, which proves asymptotic
stability. With repeated and/or non-real eigenvalues things are a bit more complicated, but if all
eigenvalues have negative real part one can find a strong Liapunov function in the form of a sum
of squares in those cases too.

Similarly, one can use Liapunov’s instability theorem to prove that if some eigenvalue has positive
real part, then the equilibrium is unstable.

• The flow box theorem. Global phase portraits.

• First integrals, also known as constants of motion, integrals of motion, conserved quantities,
invariants, etc.

(Can sometimes be found by writing d y/d x = ẏ/ẋ = Y (x, y)/X (x, y) and solving the resulting ODE
for y = y(x).)

• If H(p, q) is any C 1 function, then the Hamiltonian system(
ṗ
q̇

)
=

(
∂H/∂q

−∂H/∂p

)
=

(
0 1
−1 0

)
∇H

automatically has H as a first integral. A fundamental fact in mechanics is that the Hamiltonian
system generated by H(p, q) = 1

2 p2 +V (q) is equivalent to the Newton-type equation q̈ =−V ′(q).
(This works also in higher dimensions, with vectors p and q instead.)

Lesson 6

• Using strong Liapunov functions: 3.13abe, 3.14abe.

• Using weak Liapunov functions: 3.15, 3.17bc.

• Finding a domain of stability using a less obvious Liapunov function: 3.19b, 3.18*.

• An example showing that the assumption V (x) →∞ is important in order to get global asymptotic
stability: A6.

• Liapunov’s instability theorem: 3.22.

• Illustration of an explicit transformation which straightens out a nonlinear vector field: 3.24.

• First integrals (constants of motion): 3.28ab, 3.29*.

In 3.28b, you can do better than the answer in the book, and find a constant of motion which is
actually defined for all x1 and x2!

In 3,29, you should do much better than the answer in the book, which is actually wrong. A correct
constant of motion is F (x1, x2) = x1(x2

1 − x2)/(x2
1 + x2)2. The level curves of this function are not

easy to plot by hand, but you can of course do it on the computer if you want to see what the phase
portrait looks like.

• An example§ illustrating why the requirement about stability in the definition of asymptotic
stability is necessary: A7.

§The system (3.33) in the book is another such example, but that one is much more difficult to analyze rigorously (Exercise 3.12);
for details see Section 40 of the book Stability of Motion by W. Hahn (Springer, 1967).
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Additional problems for lesson 6

A6 Show that

V (x, y) = x2

1+x2 + y2

is a global strong Liapunov function for the system

ẋ =−x (1−3x2 y2), ẏ =−y (1+x2 y2),

but that the origin is not globally asymptotically stable (although it is locally asymptotically stable).

Note that V (x, y) does not satisfy the condition that V (x, y) →∞ as
√

x2 + y2 →∞. What do the
level sets of V look like, in particular the level set V = 1?

[Hints: One can write V̇ as

V̇ =−2
x2(1−x2 y2)2 + y2(1+2x2)(1+x2 y2)

(1+x2)2 ,

and
(
x(t ), y(t )

)= (e2t ,e−2t ) is a particular solution of the system.]

A7 Consider the system

ẋ = x − y −xr 2 + x y

r
, ẏ = x + y − yr 2 − x2

r
,

where r =
√

x2 + y2, and where the right-hand sides are interpreted as zero when (x, y) = (0,0).¶

Rewrite this system in polar coordinates, and use this to draw the phase portrait.

Deduce that, with the exception of the equilibrium solution (x, y) = (0,0), all solutions (x(t ), y(t ))
approach the point (x, y) = (1,0) as t →∞, but (1,0) is still an unstable equilibrium.

[Answer: ṙ = r − r 3, θ̇ = 1−cosθ.]

Lecture 7. Limit sets

(Arrowsmith & Place, sections 3.8, 3.9.)

• Definition of the α-limit set Lα(x) and the ω-limit set Lω(x) of a point x.

(Definition 3.8.1 and the paragraph just below it.)

• In three or more dimensions, limit sets can be extremely complicated, since trajectories have room
to wind around in space in very strange ways. But in the plane, the possibilities are much more
restricted, as shown by Theorem 3.9.1, the Poincaré–Bendixson theorem (given without proof in
the textbook): if a compact nonempty limit set in the plane contains no equilibrium points, then it
must be a periodic orbit.

• Some properties of ω-limit sets:

– Lω(x) is always a closed and invariant set. (See Definition 3.9.2.)

– Limit sets may be empty, unbounded, disconnected (see problem A8). But if the forward
orbit of x is bounded, then Lω(x) is connected, compact and non-empty, and*

ϕt (x) → Lω(x) as t →∞.

¶This system is a bit nasty at the origin, since the right-hand sides are not differentiable there, only continuous. If you prefer,
you can get a system of class C 1 by multiplying both right-hand sides by r 2; this rescaling of the vector field doesn’t change what
the phase portrait looks like.

*The notation ϕt (x) → Lω(x) means that for any neighbourhood U of the limit set Lω(x) there is a time T such that ϕt (x) ∈U for
all t > T .
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The corresponding properties hold of course for α-limit sets (as t →−∞).

Proof of the invariance property. Suppose y ∈ Lω(x). By definition, this means that ϕtn (x) → y for
some sequence tn →∞. Fix an arbitrary t ∈ R. Applying the continuous function ϕt to both sides
gives ϕt+tn (x) →ϕt (y), so ϕt (y) ∈ Lω(x).

(I omit the proofs of the other properties, although they are not very difficult.)

• A limit cycle (Definition 3.8.2) is a periodic orbit which lies in the α- or ω-limit set of some point
not on the orbit.

To show the existence of a limit cycle for a planar system using the Poincaré–Bendixson theorem,
one tries to find a trapping region containing no equilibra. A trapping region for a system with
flow ϕt is a compact, connected set D ⊂ R2 such that ϕt (D) ⊂ D for t > 0. When reading this
definition, it’s important to note that Arrowsmith & Place use the symbol “⊂” for strict set inclusion.
The point is that if we only require D to be forward invariant (that is, ϕt (D) ⊆ D for t > 0, with
non-strict set inclusion “⊆”), then it may be the case that D is a union of periodic orbits†, in which
case there are no limit cycles in D. But with strict set inclusion, the points in the nonempty set
D \ϕt (D) (for any fixed t > 0) can’t lie on a periodic orbit‡, and the ω-limit set of such a point x0 is
a nonempty compact subset of D . If we have chosen the trapping region D such that it contains no
equilibria, the Poincaré–Bendixson theorem says that Lω(x0) must be a periodic orbit. Since x0 was
not on any periodic orbit, Lω(x0) doesn’t contain x0, so it is a periodic orbit which is the ω-limit set
of a point not on the orbit – in other words, it’s an ω-limit cycle. Conclusion: the trapping region D
contains at least one limit cycle.

(But there may be many limit cycles in D ! To prove that there is at most one limit cycle is usually
much more difficult.)

• Now that we know what an ω-limit set Lω(x) is, we can state LaSalle’s invariance principle that
was mentioned in the previous lecture. We consider a system ẋ = X(x) with flow ϕt .

Theorem. Suppose V : Ω→ R is differentiable on the open setΩ⊆ Rn , and satisfies V̇ (y) ≤ 0 for
each y in some closed set M ⊆Ω.

1. If x is a point in M whose forward orbit O+(x) never leaves M , then there is an α ∈ R such that

Lω(x) ⊆ {
y ∈ M : V (y) =α}

.

This implies that Lω(x) is an invariant set contained in the set

C = {
y ∈ M : V̇ (y) = 0

}
,

and hence Lω(x) ⊆ E , where E is the largest invariant subset of C (i.e., E is the union of all
trajectories which stay in C for all t ∈ R).

Proof. This is trivially true if Lω(x) =;, since the empty set is a subset of every set. So assume
Lω(x) 6= ;. (In particular, this assumption entails that the solution ϕt (x) exists for all t ≥ 0.)
To begin with,

Lω(x) ⊆O+(x) (follows from def. of Lω(x))

⊆ M (since O+(x) ⊆ M by assumption)

= M (since M is closed).

†For example (in polar coordinates), if the system is ṙ = 0, θ̇ = 1, and D is the annulus 1 ≤ r ≤ 2.
‡Suppose that x0 ∈ D \ϕt (D) for some t > 0 and that x0 lies on a periodic orbit with period T > 0. Let n be a positive integer

such that nT > t . Then
y =ϕnT−t (x0) ∈ϕnT−t (D) ⊂ D

so that
x0 =ϕnT (x0) =ϕt (y) ∈ϕt (D),

which is a contradiction.
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Next, the assumptions that V̇ ≤ 0 on M and that ϕt (x) stays in M for t ≥ 0 imply that V (ϕt (x))
is a weakly decreasing function of t for t ≥ 0, so the limit

α= lim
t→∞V (ϕt (x))

exists, either as a real number α ∈ R or in the improper sense α=−∞. But if y is any element
in the nonempty set Lω(x), meaning that ϕtn (x) → y for some sequence tn ↗∞, then

V (y) =V
(

lim
n→∞ϕtn (x)

)
= lim

n→∞V
(
ϕtn (x)

)=α,

since V is continuous. This shows that α equals the real number V (y), not −∞.

The above calculation holds for an arbitrary y ∈ Lω(x), so V =α on all of Lω(x). And Lω(x) is
an invariant set (general property of limit sets), so ϕt (y) ∈ Lω(x) for all t if y ∈ Lω(x). Thus
V (ϕt (y)) =α for all t , and hence

V̇ (y) = 0 if y ∈ Lω(x).

What we have shown now is that Lω(x) is an invariant set which is contained in the set C ⊆ M
where V̇ = 0. Therefore, it must trivially be contained in E , the largest invariant set contained
in C .

2. If moreover the forward orbit O+(x) is bounded, then Lω(x) is nonempty and ϕt (x) → Lω(x)
as t →∞. So ϕt (x) → E as t →∞.

Proof. The first sentence was one of the general properties of limit sets stated at the beginning
of the lecture. The second sentence follows at once from the property Lω(x) ⊆ E that we
proved in item 1. (The conclusion thatϕt (x) → E is of course a bit weaker than ϕt (x) → Lω(x),
but the point is that the set E does not depend on x.)

3. If M is compact and forward invariant, then items 1 and 2 apply to every point x ∈ M . So in
this case, ϕt (x) → E as t →∞, for every x ∈ M .

Proof. Trivial.

The point of this theorem is that the set E is often quite easy to determine. We find the set C simply
by computing V̇ and checking where it’s zero. This is typically some curve, if we are in R2. Then we
study what the vector field X is doing at each point of the set C – if the vector field is pointing out
from C at some point, then that point can’t be part of a trajectory completely contained in C , so it
can’t belong to E .

A typical application is the situation described in Theorem 3.5.2 (see the previous lecture), where
we have only managed to find a weak Liapunov function V , but the “bad” set C where we have
V̇ = 0 instead of V̇ < 0 doesn’t contain any trajectories except the equilibrium point x∗.

Proof of Theorem 3.5.2. As usual, let B = B(x∗,r ) be a closed ball (or some other neighbourhood
of x∗ topologically equivalent to a closed ball) contained inΩ, and define

N = {
x ∈ B : V (x) <α}

, where α= min
x∈∂B

V (x) > 0.

Stability of x∗ follows from the weak version of Liapunov’s theorem, so we just need to show that N
is a domain of stability. To apply LaSalle’s invariance principle, we need a compact and forward
invariant set M , so N (which is open) won’t do. Instead, take β with 0 ≤β<α, and let

M = {
x ∈ B : V (x) ≤β}

.
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Then M is closed (and hence compact) since V is continuous.§ And it’s forward invariant; indeed,
a trajectory starting in M can’t leave M , since then it would enter the part of B where V >β, so V
wouldn’t be weakly decreasing along that trajectory, and that would contradict the assumption that
V̇ ≤ 0 inΩ. Now the invariance principle says that every trajectory starting in M converges to E ,
the largest invariant subset of C = {x ∈ M : V̇ (x) = 0}. But by assumption, there are no trajectories
even in the larger set C2 = {x ∈Ω : V̇ (x) = 0} except for the equilibrium x∗. Hence E = {x∗}, and
every trajectory starting in M converges to x∗. So every such set M is a domain of stability.

To show that N is a domain of stability, just note that any x0 ∈ N belongs to the set M ⊆ N defined
using β=V (x0) <α. Therefore the trajectory starting at x0 stays in N and converges to x∗.

• The Poincaré map (or first-return map) associated with a closed orbit.

• Theorem 3.9.2 is called the Bendixson criterion.

A simple generalization is the Bendixson–Dulac criterion, which gives the same conclusion pro-
vided that that there is a function f (x1, x2) of class C 1 such that the divergence of the rescaled
vector field f X,

∇· ( f X) = ∂

∂x1

(
f X1

)+ ∂

∂x2

(
f X2

)
,

is of constant sign in D .

Lesson 7

• α- and ω-limit sets: 3.35, A8*.

(There’s an error in the answer to 3.35b; it should say Lα(x) = {0} for 0 < r < 1.)

• Poincaré map: 3.36.

(In this problem, it’s understood that a > 0.)

• Invariant sets, trapping regions: 3.42 (3.42e), 3.43.

• The Bendixson criterion: A9.

Additional problems for lesson 7

A8 (a) Show that for the equation ẋ = 1, the ω-limit set of each point is the empty set.

(b) Sketch the phase portrait for the system

ẋ =−y + x

1+x2 , ẏ = x (1− y2).

Show that the ω-limit set of any point (x, y) 6= (0,0) in the strip
∣∣y

∣∣< 1 is the union of the lines
y =±1, and hence is unbounded and disconnected. (Note also that for these points it’s not
true that ϕt (x, y) → Lω(x, y) as t →∞.)

[Hint: To show that the solution curves spiral outwards, consider in what direction they
deviate from the closed solution curves of the conservative system ẋ =−y , ẏ = x (1− y2).]

A9 Show that the following systems have no closed orbits:

(a) ẋ = y +x3, ẏ = x + y + y3.

(b) ẋ = 1−x3 + y2, ẏ = 2x y .

(c) ẋ = y , ẏ =−x − y +x2 + y2. [Hint: Use Bendixson–Dulac with f (x, y) = e−2x .]
§ If xn is a sequence of points in M converging to x, then x ∈ B = B , and by continuity

V (xn )︸ ︷︷ ︸
≤β

→V (x),

so V (x) ≤β. Hence x ∈ M , which means that M is closed.
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Lecture 8. Some applications

(Arrowsmith & Place, sections 5.1, 5.2, 5.3, 5.4.)

• In this lecture we will have a look at a selection of the applications from Chapter 5, but there will
not be time to cover everything, so you’ll have to read the rest for yourself.

• The analysis in Section 5.3.3 of the Holling–Tanner predator–prey model

d x

d t
= r x

(
1− x

K

)
− w x y

D +x
,

d y

d t
= s y

(
1− y

x/J

)
can be made simpler by writing the system in dimensionless variables (s,u, v) instead of (t , x, y).
This nondimensionalization is a very useful technique for reducing the number of parameters in
a system, and since it’s not described in the textbook, I’ll explain it here instead. Let

s = c0t , x = c1u, y = c2v,

where c0, c1 and c2 are constants that we will specify soon. Inserting this into the differential
equations, we get

c1

c0

du

d s
= r c1u

(
1− c1u

K

)
− wc1uc2v

D + c1u
,

c2

c0

d v

d s
= sc2v

(
1− c2v

c1u/J

)
,

which we can simplify to

du

d s
= (r c0)u

(
1− c1

K
u

)
−

wc0c2
c1

uv

D
c1
+u

,
d v

d s
= (sc0)v

(
1− c2 J

c1

v

u

)
.

↑ ↑ ↑

At this stage, we have some freedom of choice, but for example we can get rid of the coefficients
indicated by the arrows, if we choose c0, c1 and c2 such that

r c0 = 1,
c1

K
= 1,

c2 J

c1
= 1.

In other words, we take

c0 = 1

r
, c1 = K , c2 = K

J
. (1)

Then the equations become

du

d s
= u (1−u)−

w
r J uv
D
K +u

,
d v

d s
= s

r v
(
1− v

u

)
,

and if we now give names to the remaining coefficients appearing in the formulas, for example

α= w

r J
, β= s

r
, δ= D

K
, (2)

then the system in its final form is

du

d s
= u (1−u)− αuv

δ+u
,

d v

d s
=βv

(
1− v

u

)
. (3)

Note that this system contains only three parameters (α,β,δ), instead of the original six parameters
(r,K , w,D, s, J). By using the possibility of rescaling the three variables, we have reduced the
number of parameters by three.
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Our choice (1) of the constants ck means that the new variables the we have introduced are actually

s = t

c0
= r t , u = x

c1
= x

K
, v = y

c2
= J y

K
.

Considering that the parameter r in the original ODEs must have the dimension [time]−1 (it’s
a per capita growth rate), and that t of course has dimension [time], we see that the rescaled
time variable s = r t is actually dimensionless. Similarly, the carrying capacity K for the prey has
the same dimension as the prey population size x (whatever unit we happen to use for this, like
number of millions of individuals, or biomass in kilograms, or something else), so the variable
u = x/K is dimensionless. And so is v , as you can check.

Moreover, the new parameters given by (2) are also dimensionless. For example, r and s are both
per capita growth rates and have the same units, so β = s/r is a dimensionless quantity which
measures the ratio beween the intrinsic growth rates of the two species. It is rather meaningless to
say something like “r is small”, since this depends on what time unit we are using – if we switched
from measuring time in nanoseconds to measuring it in centuries, we would get a very different
numerical value for r . But the statement “β is small” (say much less than 1) expresses a fact which
is meaningful regardless of scale, namely that the predators reproduce much slower than the prey.

With the system in the simpler form (3), we can now carry out the same analysis as in Section 5.3.3,
but it will be cleaner, since there is less to write, and we also don’t get all the original parameters
scattered among our formulas, but we always keep them gathered in the meaningful combinations
α, β and δ. In the textbook, they do a bit of rescaling at the end, namely taking x/x∗ and y/y∗ as
new variables, where (x∗, y∗) is the nontrivial equilibrium point, but they don’t use the possibility
of rescaling time to get rid of one more parameter.

Lesson 8

• Damped harmonic oscillator: 5.2, 5.3, 5.10.

• Population models: 5.15, 5.16, 5.17.

The system in 5.15 is the same as in 1.19d that you have done before. Since we view it as population
model here, we can restrict ourselves to investigating the region x1 ≥ 0, x2 ≥ 0.

• Epidemics: 5.21.

(Hint: Find a constant of motion.)

Lecture 9. More about existence and uniqueness

(Not covered in Arrowsmith & Place; see notes below instead.)

Our goal this time is to use Picard iteration, also known as the method of successive approximations,
to prove the Picard–Lindelöf theorem, the fundamental existence and uniqueness theorem for a system
of (non-autonomous) first order ODEs ẋ = X

(
t ,x

)
with a given initial condition x(t0) = c.

Preliminaries from analysis: uniform convergence

We will need some theorems about convergence of sequences and series of functions (not just numbers).

Definition (Pointwise and uniform convergence). Suppose f and f0, f1, f2, . . . are real-valued functions
all defined on the same set I (for example an interval).

• The sequence ( fn)∞n=0 converges to the function f pointwise on I if

lim
n→∞ fn(x) = f (x)
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is true for each x ∈ I .

[Equivalently: for each x ∈ I and for each ε> 0 there is an N (which may depend on x and ε) such
that

∣∣ fn(x)− f (x)
∣∣< ε for all n ≥ N .]

• The sequence ( fn)∞n=0 converges to the function f uniformly on I if

lim
n→∞sup

x∈I

∣∣ fn(x)− f (x)
∣∣= 0.

[Equivalently: for each ε> 0 there is an N (which may depend on ε) such that
∣∣ fn(x)− f (x)

∣∣< ε for
all x ∈ I and all n ≥ N .]

• The function series
∑∞

n=0 fn(x) converges pointwise/uniformly to the function s(x) if the sequence
of partial sums sn(x) =∑n

k=0 fk (x) converges pointwise/uniformly to s(x).

Remark. The same definitions also apply to complex-valued or vector-valued functions, etc., with the
suitable interpretation of what

∣∣ fn(x)− f (x)
∣∣ means.

Theorem. Uniform convergence implies pointwise convergence, but not the other way around.

Proof. If fn → f uniformly, then for a given ε> 0 one can find an N which works for all x, so the same
number N will work for each particular x in the definition of pointwise convergence.

An example showing that the converse fails is the sequence fn(x) = xn on the interval [0,1], which
converges pointwise, but not uniformly, to the discontinuous function

f (x) =
{

0, 0 ≤ x < 1,

1, x = 1.

Theorem (The uniform limit theorem). If each fn is continuous on I , and fn → f uniformly, then f is
continuous on I .

Proof. Suppose a ∈ I . Let ε> 0. Since fn → f uniformly, there is an N such that
∣∣ fN (x)− f (x)

∣∣< ε/3 for
all x ∈ I . Since fN is continuous, there is a δ > 0 such that

∣∣ fN (x)− fN (a)
∣∣ < ε/3 for all x ∈ I such that

|x −a| < δ. The triangle inequality gives∣∣ f (x)− f (a)
∣∣= ∣∣ f (x)− fN (x)+ fN (x)− fN (a)+ fN (a)− f (a)

∣∣
≤ ∣∣ f (x)− fN (x)

∣∣+ ∣∣ fN (x)− fN (a)
∣∣+ ∣∣ fN (a)− f (a)

∣∣
< ε

3
+ ε

3
+ ε

3
= ε

for all x ∈ I such that |x −a| < δ. Thus f is continuous at a.

Theorem (The Weierstrass M-test). If the numerical series
∑∞

n=0 Mn converges, and if
∣∣ fn(x)

∣∣ ≤ Mn

for all x ∈ I , then the function series
∑∞

n=0 fn(x) converges uniformly (and absolutely) on I to some
function S(x).

Proof. (Omitted.)

Remark. In the M-test, if each fn is continuous, then the sum S is also a continuous function. This
follows by applying the uniform limit theorem to the sequence of partial sums.

Equivalent integral equation

Lemma. Let I ⊆ R be an open interval (bounded or unbounded), and assume that X : I ×Rn → Rn is
continuous. Let t0 ∈ I . Then the function x(t ) (t ∈ I ) is a continuously differentiable solution of the initial
value problem

ẋ(t ) = X
(
t ,x(t )

)
for t ∈ I ,

x(t0) = c,
(A)
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if and only if it is a continuous solution of the integral equation

x(t ) = c+
∫ t

t0

X
(
s,x(s)

)
d s for t ∈ I . (B)

The same statement holds also for closed intervals I , provided that the derivative ẋ(t ) is interpreted as a
one-sided derivative when t is an endpoint of I .

Proof. This is an immediate consequence of the fundamental theorem of calculus.

Picard iteration

Picard’s idea for proving the existence of a solution to problem (A) is to recursively define an infinite
sequence of functions

x0(t ), x1(t ), x2(t ), . . . (t ∈ I )

by the formulas

x0(t ) = c,

xn(t ) = c+
∫ t

t0

X
(
s,xn−1(s)

)
d s for n ≥ 1,

and to show that this sequence converges (under some conditions) to a continuous function x(t ) which
satisfies the integral equation (B), and hence also the initial value problem (A). The uniqueness of this
solution is proved by separate argument (but under the same conditions).

We may note right away that each function xn(t ) in the sequence is differentiable on I . This is obvious
for n = 0 since x0 is just a constant function, and for n ≥ 1 it follows from the fundamental theorem of
calculus:

dxn

d t
(t ) = X

(
t ,xn−1(t )

)
.

And since the functions xn(t ) are differentiable, they are automatically continuous as well.

The Lipschitz condition

How to prove that the sequence defined by Picard iteration converges? Answer: We write

xn =
(
xn −xn−1

)
+·· ·+

(
x2 −x1

)
+

(
x1 −x0

)
+x0

= c+
n∑

k=1

(
xk −xk−1

)
,

and apply the Weierstrass M-test to show that the function series

c+
∞∑

k=1

(
xk −xk−1

)
converges (uniformly, on some interval).

For this, we will need to estimate the differences xk −xk−1. For k ≥ 2 we have

xk (t )−xk−1(t ) =
(

c+
∫ t

t0

X
(
s,xk−1(s)

)
d s

)
−

(
c+

∫ t

t0

X
(
s,xk−2(s)

)
d s

)
=

∫ t

t0

(
X
(
s,xk−1(s)

)−X
(
s,xk−2(s)

))
d s.
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To get anything interesting out of this expression, it’s necessary to assume something about the function X.
The natural assumption in this context is that X satisfies the following so-called Lipschitz condition with
respect to x: there is some setΩ⊆ Rn and some constant L > 0 such that*

|X(t ,a)−X(t ,b)| ≤ L |a−b| for all t ∈ I and for all a, b ∈Ω. (Lip)

This assumption allows us to make an estimate where we get rid of the terms containing X, as follows: if

xk−1(t ) ∈Ω and xk−2(t ) ∈Ω for all t ∈ I ,

then for t0 ≤ t ∈ I we have

|xk (t )−xk−1(t )| =
∣∣∣∣∫ t

t0

(
X
(
s,xk−1(s)

)−X
(
s,xk−2(s)

))
d s

∣∣∣∣ (put |· · ·| around the equality above)

≤
∫ t

t0

∣∣∣X(
s,xk−1(s)

)−X
(
s,xk−2(s)

)∣∣∣ d s (triangle inequality for integrals)

≤ L
∫ t

t0

|xk−1(s)−xk−2(s)| d s (because of the Lipschitz condition),

and similarly for t0 ≥ t ∈ I with the bounds of integration in the opposite order:

|xk (t )−xk−1(t )| ≤ L
∫ t0

t
|xk−1(s)−xk−2(s)| d s.

In the proofs below, these inequalities will allow us to use knowledge about one difference xk−1 −xk−2 to
say something about the next difference xk −xk−1.

The Picard–Lindelöf theorem

Theorem (Picard–Lindelöf theorem, global version). Let I ⊆ R be an open interval, and assume that
X : I ×Rn → Rn is continuous and satisfies the Lipschitz condition (Lip) on the whole space Rn :

|X(t ,a)−X(t ,b)| ≤ L |a−b| for all t ∈ I and for all a, b ∈ Rn .

Then for any t0 ∈ I and any c ∈ Rn , the initial value problem (A),

ẋ(t ) = X
(
t ,x(t )

)
for t ∈ I ,

x(t0) = c,

has exactly one solution x(t). (Note that the interval I may be bounded or unbounded, and that the
solution is defined on the whole interval t ∈ I .)

Theorem (Picard–Lindelöf theorem, local version). Let I ⊆ R be an open interval, and assume that
X : I ×Ω→ Rn is continuous and satisfies the Lipschitz condition (Lip) on some open setΩ⊆ Rn :

|X(t ,a)−X(t ,b)| ≤ L |a−b| for all t ∈ I and for all a, b ∈Ω.

*For example, in the one-dimensional case, if the partial derivative ∂X
∂x (t , x) exists and satisfies the boundedness condition∣∣∣∣∂X

∂x
(t , x)

∣∣∣∣≤ L for all t ∈ I and for all a, b ∈Ω,

then the mean value theorem for derivatives implies that

|X (t , a)−X (t ,b)| =
∣∣∣∣(b −a)

∂X

∂x
(t ,ξ)

∣∣∣∣≤ L |b −a| for all t ∈ I and for all a, b ∈Ω,

so that the Lipschitz condition holds. Similarly in higher dimensions. For simplicity, one often uses the stronger assumption that
X(t ,x) is of class C 1; this gives the Lipschitz condition automatically.
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Given any t0 ∈ I and any c ∈Ω, take h > 0 and r > 0 small enough that the interval J = [t0 −h, t0 +h] is
contained in I and the closed ball B = B(c,r ) is contained inΩ, and let

C = max
(t ,x)∈J×B

∣∣X(
t ,x

)∣∣ .

(This maximum exists by the extreme value theorem.) Then the initial value problem (A),

ẋ(t ) = X
(
t ,x(t )

)
for t ∈ [t0 −ε, t0 +ε] where ε= min(h,r /C ),

x(t0) = c,

has exactly one solution x(t ). (Note that we cannot in general guarantee that the solution is defined on
the whole interval I , only on a subinterval.)

Proof of the global version. Define the sequence
(
xn(t )

)∞
n=0 for t ∈ I by Picard iteration as above.

Take any S ∈ I and T ∈ I with S < t0 < T . We will show that there is a unique solution defined on the
interval [S,T ], and since S and T are arbitrary, this implies that there is a unique solution on the whole
interval I .

Since the function X is continuous and the interval [S,T ] is closed and bounded, the maximum

M = max
t∈[S,T ]

|X(t ,c)|

exists, by the extreme value theorem.
Let t ∈ [t0,T ] to begin with. Then we have

|x1(t )−x0(t )| =
∣∣∣∣(c+

∫ t

t0

X
(
s,c

)
d s

)
−c

∣∣∣∣≤ ∫ t

t0

∣∣X(
s,c

)∣∣ d s ≤ M (t − t0),

Now that we have an estimate for the first difference x1 −x0, we can start estimating the other differences
xk −xk−1 successively, using the inequality that we derived in the section about the Lipschitz condition
above. This gives (still for t ∈ [t0,T ]):

|x2(t )−x1(t )| ≤ L
∫ t

t0

|x1(s)−x0(s)| d s ≤ L
∫ t

t0

M (s − t0)d s = LM

2
(t − t0)2,

|x3(t )−x2(t )| ≤ L
∫ t

t0

|x2(s)−x1(s)| d s ≤ L
∫ t

t0

L2M

2
(s − t0)2 d s = L2M

2 ·3
(t − t0)3,

|x4(t )−x3(t )| ≤ L
∫ t

t0

|x3(s)−x2(s)| d s ≤ L
∫ t

t0

L2M

2 ·3
(s − t0)3 d s = L3M

2 ·3 ·4
(t − t0)4,

and so on, with an obvious pattern emerging. To get a uniform estimate, let t = T :

|xk (t )−xk−1(t )| ≤ Lk−1M

k !
(T − t0)k for all t ∈ [t0,T ] and k ≥ 1.

If we instead consider t ∈ [S, t0], we find in the same way that

|xk (t )−xk−1(t )| ≤ Lk−1M

k !
(t0 −S)k for all t ∈ [S, t0] and k ≥ 1.

We can combine these two estimates into a single uniform estimate over the whole interval [S,T ], less
sharp but still good enough for our purposes:

|xk (t )−xk−1(t )| ≤ Lk−1M

k !
(T −S)k for all t ∈ [S,T ] and k ≥ 1.

The numerical series

∞∑
k=1

Lk−1M

k !
(T −S)k = M

L

∞∑
k=1

(
L (T −S)

)k

k !
= M

L

(
eL (T−S) −1

)
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converges, so the Weierstrass M-test shows the uniform convergence on [S,T ] of the function series that
we have majorized,

c+
∞∑

k=1

(
xk (t )−xk−1(t )

)
.

The partial sums of this series are just the functions

xn(t ) = c+
n∑

k=1

(
xk (t )−xk−1(t )

)
,

so what we have shown is that the function sequence
(
xn

)∞
n=0 converges uniformly on [S,T ] to some

function x. And since each function xn is continuous, the uniform limit theorem shows that this function x
is continuous.

Moreover, for t ∈ [S,T ],

x(t )−c−
∫ t

t0

X
(
s,x(s)

)
d s

= x(t )−xn(t )+xn(t )−c−
∫ t

t0

X
(
s,x(s)

)
d s (add and subtract xn)

= x(t )−xn(t )+
∫ t

t0

X
(
s,xn−1(s)

)
d s −

∫ t

t0

X
(
s,x(s)

)
d s (use definition of xn)

= x(t )−xn(t )+
∫ t

t0

(
X
(
s,xn−1(s)

)
d s −X

(
s,x(s)

))
d s,

so ∣∣∣∣x(t )−c−
∫ t

t0

X
(
s,x(s)

)
d s

∣∣∣∣≤ |x(t )−xn(t )|+
∣∣∣∣∫ t

t0

∣∣∣X(
s,xn−1(s)

)
d s −X

(
s,x(s)

)∣∣∣ d s

∣∣∣∣
≤ |x(t )−xn(t )|+L

∣∣∣∣∫ t

t0

|xn−1(s)−x(s)| d s

∣∣∣∣ ,

where the right-hand side can be made arbitrarily small by taking n large enough, due to the uniform
convergence

max
t∈[S,T ]

|xn(t )−x(t )|→ 0 as n →∞.

Therefore, since the left-hand side is nonnegative and independent of n, it must be zero:

x(t )−c−
∫ t

t0

X
(
s,x(s)

)
d s = 0.

In other words, the continuous function x(t ) satisfies the integral equation (B) on the interval [S,T ], and
thus it also satisfies the equivalent initial value problem (A) on [S,T ].

To show uniqueness, assume that the function y(t ) is also a continuous solution of (B) on [S,T ]. Then
the maximum

A = max
t∈[S,T ]

∣∣y(t )−c
∣∣

exists, by the extreme value theorem. For t ∈ [t0,T ] we first estimate

∣∣y(t )−x1(t )
∣∣= ∣∣∣∣(c+

∫ t

t0

X
(
s,y(s)

)
d s

)
−

(
c+

∫ t

t0

X
(
s,x0(s)

)
d s

)∣∣∣∣ (def. of y and x1)

≤
∫ t

t0

∣∣∣X(
s,y(s)

)−X
(
s,c

)∣∣∣ d s (triangle inequality for integrals)

≤ L
∫ t

t0

∣∣y(s)−c
∣∣ d s (Lipschitz condition)

≤ L A (t − t0) (definition of A),
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and then successively (in a manner very similar to what we did earlier)

∣∣y(t )−x2(t )
∣∣≤ L2 A (t − t0)2

2
,

∣∣y(t )−x3(t )
∣∣≤ L3 A (t − t0)3

2 ·3
,

∣∣y(t )−x4(t )
∣∣≤ L4 A (t − t0)4

2 ·3 ·4
,

and so on. Together with the similar estimates for t ∈ [S, t0] we get

∣∣y(t )−xn(t )
∣∣≤ Ln A (T −S)n

n!
for all t ∈ [S,T ] and n ≥ 0.

The right-hand side tends to zero as n →∞, so the limit of the left-hand side,
∣∣y(t )−x(t )

∣∣, must also be
zero. Thus y(t ) = x(t ) for all t ∈ [S,T ], and uniqueness is proved.

Idea of proof of the local version. Do more or less the same thing, but also use the restrictions to make
sure that the Picard iteration doesn’t take us outside of the region where the Lipschitz condition holds.

Lesson 9

• Integral equations and Picard iteration: A10.

• Non-uniqueness and non-existence: A11, A12.

• Grönwall’s lemma: A13, A14.

Additional problems for lesson 9

A10 (a) Solve the integral equation

x(t ) = 1+
∫ t

0
x(s)d s

exactly. For comparison, also compute the sequence of Picard approximations

xn(t ) = 1+
∫ t

0
xn−1(s)d s

starting with the constant function x0(t ) = 1.

[Answer: Exact solution x(t ) = e t . Picard iterates xn(t ) =∑n
k=0

t k

k ! .]

(b) Do the same for

x(t ) = 3+
∫ t

0
4s x(s)d s.

A11 Consider the ODE t ẋ = 2x. (Notice that the coefficient of ẋ equals zero at t = 0, so we might expect
some “trouble” there; it’s a singular point of the equation.)

(a) Verify that

x(t ) =
{

t 2, t ≥ 0,

C t 2, t < 0

satisfies the ODE for any constant C . Thus there are infinitely many solutions satisfying the
condition x(1) = 1.

(b) Show that there are also infinitely many solutions satisfying the condition x(0) = 0, but no
solutions satisfying x(0) = b with b 6= 0.
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A12 Find all functions x(t ), t ∈ R which satisfy

ẋ = 2
√
|x|, x(0) = 0.

A13 There are several variants of Grönwall’s lemma (or Grönwall’s inequality), which all boil down to
the fact that if a function satisfies a differential or integral inequality of a certain form, then it can
be no bigger than the solution of the corresponding differential or integral equation.

(The inequality limits how fast the function can grow, and to push those limits to the maximium
and grow as fast as possible, the function should satisfy the inequality with equality.)

Here your task is to prove (with guidance) the following version of Grönwall’s lemma:

Theorem. Let a(t ) and b(t ) be continuous functions with b(t ) ≥ 0, and suppose that u(t ) satisfies
the integral inequality

u(t ) ≤ a(t )+
∫ t

0
b(s)u(s)d s for t ≥ 0.

Then
u(t ) ≤ y(t ) for t ≥ 0,

where y(t ) is the solution of the corresponding integral equation

y(t ) = a(t )+
∫ t

0
b(s) y(s)d s,

namely

y(t ) = a(t )+
∫ t

0
a(s)b(s)eB(t )−B(s) d s, where B(t ) =

∫ t

0
b(τ)dτ.

Outline of proof. Follow these steps:

• First rewrite the integral equation for y(t) as an ODE for the integral I (t) = ∫ t
0 b(s) y(s)d s =

y(t )−a(t ) appearing on the right-hand side:

I ′(t )−b(t ) I (t ) = a(t )b(t ), I (0) = 0.

• Multiply both sides by the integrating factor e−B(t ) and integrate from 0 to t .

• After having solved for I (t ) in this way, you also know what y(t ) is, namely y(t ) = a(t )+ I (t ).
Verify that your expression for y(t) agrees with the formula for y(t) given in the theorem
above.

• Next consider the inequality for u(t). Let J(t) = ∫ t
0 b(s)u(s)d s be the integral appearing on

the right-hand side. It satisfies J ′(t) = b(t)u(t). By assumption we have u ≤ a + J and b ≥ 0,
and therefore J ′ = bu ≤ b(a + J ). So we know that J satisfies

J ′(t )−b(t ) J (t ) ≤ a(t )b(t ), J (0) = 0.

• Convince yourself that you can now perform exactly the same steps as when you solved the
equation for I (t) (multiply by the integrating factor, integrate, etc.), but with J instead of I
and “≤” instead of ”=”. (Here it’s important that t ≥ 0.)

• And since you do the same steps, you will get the same result in the end, except with “u(t ) ≤”
instead of “y(t ) =”.

• This proves that u(t ) ≤ y(t ) for t ≥ 0. Done!

As a bonus question, see if you can prove this variant of Grönwall’s lemma in a similar way:
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Theorem. Let g be a continuous function (which need not be positive). If u(t ) is continuous for
t ≥ 0 and differentiable for t > 0, and satisfies the differential inequality

u′(t ) ≤ g (t )u(t ) for t > 0,

u(0) = c,

then
u(t ) ≤ y(t ) for t ≥ 0,

where y(t ) is the solution of the corresponding differential equation

y ′(t ) = g (t ) y(t ) for t > 0,

y(0) = c,

namely

y(t ) = c eG(t ), G(t ) =
∫ t

0
g (s)d s.

A14 (a) Compute the solution x(t) of the initial value problem ẋ = x2, x(0) = c > 0, and note that it
blows up after finite time (as t ↗ 1/c).

(b) In part (a), the right-hand side of the ODE was obviously quadratic in x.

In contrast, show that if the right-hand side of the system ẋ = X(x) is linearly bounded,
meaning that there are constants a ≥ 0 and b ≥ 0 such that

|X(x)| ≤ a +b |x| for all x ∈ Rn ,

then the solution x(t ) with initial value x(0) = x0 cannot blow up in finite time, so it is defined
for all t ≥ 0 (regardless of x0).

(We are assuming that the vector field X(x) is nice enough for the flow to exist at least locally,
say of class C 1. It can be proved that if X(x) is defined for all x ∈ Rn , then the only way for
solutions to cease existing after finite time is that |x| →∞. Let us take this fact for granted
here.)

[Hint: Assume, for a contradiction, that some solution x(t ) only exists for 0 ≤ t < t0. From

x(t ) = x0 +
∫ t

0
X(x(s))d s,

deduce that

|x(t )| ≤ |x0|+at +
∫ t

0
b |x(s)| d s for 0 ≤ t < t0,

and apply Grönwall’s lemma from problem A13 to show that |x(t )| cannot tend to ∞ as t ↗ t0.]

Lecture 10. Linear equations with non-constant coefficients

(Not covered in Arrowsmith & Place; see notes below instead.)

Second-order linear ODEs

Many ODE books with a more “classical” flavour allocate plenty of space to the topic of second order
(inhomogeneous) linear ODES,

ẍ +p1(t ) ẋ +p0(t ) x = f (t ),

which appear in many applications, and are also of historical importance. Some particular such ODEs
have been studied so much that one could easily spend several courses on them alone, like the Bessel
equation (with parameter α ∈ C),

ẍ + 1
t ẋ + t 2−α2

t 2 x = 0.
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Any second-order ODE can be rewritten as a system of two first-order ODEs, for example by letting x1 = x
and x2 = ẋ:

ẍ+p1(t ) ẋ+p0(t ) x = f (t ) ⇐⇒
(

ẋ1

ẋ2

)
=

(
x2

f (t )−p1(t ) x2 −p0(t ) x1

)
=

(
0 1

−p0(t ) −p1(t )

)(
x1

x2

)
+

(
0

f (t )

)
.

Here we will focus more on systems of first-order (inhomogeneous) linear ODEs in general:

ẋ = A(t )x+ f(t ),

where x(t ) ∈ Rn and A(t ) is some n×n matrix. From the general results about systems we can then obtain
some of the basic facts about second-order linear ODEs simply by considering the special case when
n = 2 and ẋ1 = x2.

First-order systems of linear ODEs

Theorem. Assume that A(t ) and f(t ) are continuous on some time interval I (bounded or not) containing
t = 0. Then the initial value problem

ẋ = A(t )x+ f(t ), x(0) = x0

has a unique solution defined on all of I .

Proof. Let J = [t1, t2] be an arbitrary compact subinterval of I containing t = 0. By the extreme value
theorem, each matrix entry Ai j (t ) is bounded on J , and since there are only finitely many matrix entries,
there must be a common constant which bounds all of them:∣∣Ai j (t )

∣∣≤C for all i and j , and all t ∈ J .

Then the i th entry in the matrix product A(t)y can be estimated using the triangle inequality and the
Cauchy–Schwarz inequality:∣∣(A(t )y

)
i

∣∣= ∣∣Ai 1(t ) y1 +·· ·+ Ai n(t ) yn
∣∣≤C

∣∣y1
∣∣+·· ·+C

∣∣yn
∣∣≤C

p
n

∣∣y∣∣ .

Squaring, summing over i , and taking the square root, we get∣∣A(t )y
∣∣≤C n

∣∣y∣∣ ,

for any vector y.
Using this property we can show that the right-hand side X(t ,x) = A(t)x+ f(t) satisfies the global

Lipschitz condition with Lipschitz constant L =C n. Indeed,

X(t ,a)−X(t ,b) =
(

A(t )a+ f(t )
)
−

(
A(t )b+ f(t )

)
= A(t )a− A(t )b = A(t ) (a−b)

implies that

|X(t ,a)−X(t ,b)| = |A(t )(a−b)| ≤C n |a−b| for all t ∈ J and for all a, b ∈ Rn .

By the global Picard–Lindelöf theorem there is therefore a unique solution defined on all of J , and since
the subinterval J was arbitrary, we can extend this solution as far as we like inside I .

Theorem. The general solution of the inhomogeneous system ẋ− A(t )x = f(t ) has the form

x(t ) = xhom(t )+xpart(t ),

where xpart is some particular solution, and xhom is the general solution of the corresponding homoge-
neous system ẋ− A(t )x = 0.

Proof. This is just a fact about linearity, and not really about differential equations. If x = x1 and x = x2

are two particular solutions, then by linearity their difference x = x1 − x2 satisfies the homogeneous
system.
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The homogeneous case

Let’s look at the homogeneous system ẋ = A(t )x first. If A(t ) = A is a constant matrix, we have seen before
that the solution is simply

x(t ) = e t A x(0),

but if A(t ) is time-dependent, we can’t in general find an explicit solution formula like that. But we can
still say a few things in principle about the structure of the solution. To formulate the theorem, let

(e1, . . . ,en)

denote the standard basis for Rn , i.e., ek = (0, . . . ,0,1,0, . . . ,0)T with a 1 in the kth position.

Theorem (Solution space). The homogeneous system ẋ = A(t )x has an n-dimensional solution space.
For example, a basis is given by the functions g1(t ), . . . , gn(t ), where x(t ) = gk (t ) is the (unique) solution
of the initial value problem starting at ek :

ẋ = A(t )x, x(0) = ek .

In terms of the n ×n-matrix
Φ(t ) =

[
g1(t ), . . . ,gn(t )

]
,

any solution has the form
x(t ) =Φ(t )x(0). (SOL)

Proof. Let x(t ) = z(t ) be any solution of ẋ = A(t )x, and let c = z(0). Then the functions x(t ) = z(t ) and

x(t ) = c1 g1(t )+·· ·+cn gn(t )

both satisfy the initial value problem

ẋ = A(t )x, x(0) = c,

so by uniqueness they must be the same function:

z(t ) = c1 g1(t )+·· ·+cn gn(t ) =Φ(t )c.

Thus an arbitrary solution z can be written as a linear combination of the functions gk , which shows that
they span the solution space, and the formula (SOL) also follows.

To show that the functions gk are linearly independent, suppose that the linear combination x(t ) =∑
ck gk (t ) is the zero function; then in particular it’s zero when t = 0:

0 = x(0) =∑
ck gk (0) =∑

ck ek = (c1, . . . ,cn)T .

In other words, c1 = ·· · = cn = 0.

Proposition. The columns of an n ×n matrixΦ(t ) are solutions of the linar system ẋ = A(t )x if and only
if the matrix itself is a solution of the matrix-valued linear ODE

Φ̇(t ) = A(t )Φ(t ).

Proof. This is an immediate consequence of how matrix multiplication works: the kth column in AΦ
equals A times the kth column inΦ.

Definition. Any time-dependent n ×n matrix whose columns are linearly independent solutions of
ẋ = A(t )x is called a fundamental matrix for the system.

Remark. The matrixΦ(t ) in the theorem above is thus one particular fundamental matrix, distinguished
by the property that Φ(0) = I . Any other fundamental matrix Ψ(t) has the form Ψ(t) =Φ(t) M where
M =Ψ(0) is a nonsingular constant n×n matrix; indeed, this is just a change of basis in the solution space.
In terms of such aΨ, the general solution of the initial value problem is x(t ) =Φ(t )x(0) =Ψ(t ) M−1 x(0).
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Rephrasing what we said before the theorem: If A is constant, then Φ(t) = e t A is the fundamental
matrix satisfying Φ(0) = I , but if A is time-dependent we cannot in general compute the fundamental
matrixΦ(t ) explicitly; we only know from the Picard–Lindelöf theorem that it exists and is unique. But
curiously enough, we can always compute its determinant:

Theorem (Liouville’s identity). IfΦ(t ) is a solution of the matrix ODE Φ̇(t ) = A(t )Φ(t ), then its determi-
nant*

W (t ) = detΦ(t )

satisfies the scalar ODE

Ẇ (t ) = tr
(

A(t )
)

W (t ),

and hence

W (t ) = exp

(∫ t

0
tr

(
A(s)

)
d s

)
W (0).

Proof. A down-to-earth way of proving this is to just compute. Consider the 3× 3 case, for ease of
notation, so that

W (x) = det
(
g1,g2,g3

)
=

∣∣∣∣∣∣
g11 g21 g31

g12 g22 g32

g13 g23 g33

∣∣∣∣∣∣= g11g22g33 +·· · .

When differentiating this using the product rule for derivatives, each of the n! terms in the determinant
will give rise to n terms, and the resulting sum can be rearranged back into a sum of n determinants:

Ẇ = d

d t
det

(
g1,g2,g3

)
=

(d g11

d t
g22g33 + g11

d g22

d t
g33 + g11g22

d g33

d t

)
+·· ·

= det
(dg1

d t
,g2,g3

)
+det

(
g1,

dg2

d t
,g3

)
+det

(
g1,g2,

dg3

d t

)
= det

(
A g1,g2,g3

)
+det

(
g1, A g2,g3

)
+det

(
g1,g2, A g3

)
.

If we expand all these determinants, what terms would we get that contain A11? Answer: the terms
appearing in the expression∣∣∣∣∣∣

A11g11 0 0
0 g22 g32

0 g23 g33

∣∣∣∣∣∣+
∣∣∣∣∣∣

0 A11g21 0
g12 0 g32

g13 0 g33

∣∣∣∣∣∣+
∣∣∣∣∣∣

0 0 A11g31

g12 g22 0
g13 g23 0

∣∣∣∣∣∣= A11 det
(
g1,g2,g3

)
.

And the terms that contain A12 are∣∣∣∣∣∣
A12g12 0 0

0 g22 g32

0 g23 g33

∣∣∣∣∣∣+
∣∣∣∣∣∣

0 A12g22 0
g12 0 g32

g13 0 g33

∣∣∣∣∣∣+
∣∣∣∣∣∣

0 0 A12g32

g12 g22 0
g13 g23 0

∣∣∣∣∣∣= A12

∣∣∣∣∣∣
g12 g22 g32

g12 g22 g32

g13 g23 g33

∣∣∣∣∣∣ ,

but this is zero since two rows are equal, so there will be no terms containing A12 in the expansion.

Similarly, we get contributions A22 det
(
g1,g2,g3

)
and A33 det

(
g1,g2,g3

)
, but no terms containing an Ai j

with i 6= j . Thus,

Ẇ = (A11 + A22 + A33) det
(
g1,g2,g3

)
= tr(A)W,

as desired. The formula for W (t ) is obtained by solving this ODE for W using an integrating factor.

Remark. See math.stackexchange.com/questions/10212/ for a higher-level point of view on this.

* Called the Wronskian determinant, or simply the Wronskian.
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[Back to lecture plan]

Remark. Liouville’s identity shows that if the columns of the matrix Φ(t) are solutions of some linear
system ẋ = A(t )x, then W (t ) = detΦ(t ) is either identically zero or never zero. The case W (t ) = 0 occurs
when the columns ofΦ are linearly dependent functions, and W (t ) 6= 0 when they are linearly indepen-
dent. But beware that if we just look at the determinant of some arbitrary time-dependent matrixΦ(t ),
then the question of linear independence of the columns is not this simple! (See problem A18.)

Consider the special case of second-order linear homogeneous ODEs

ẍ +p1(t ) ẋ +p0(t ) x = 0,

which can be written as ẋ = Ax with

x(t ) =
(

x(t )
ẋ(t )

)
, A(t ) =

(
0 1

−p0(t ) −p1(t )

)
,

as in the beginning of this lecture. Since tr
(

A(t)
) = −p1(t) in this case, Liouville’s identity takes the

following form:

Theorem (Abel’s identity). If x = y(t) and x = z(t) are two solutions of ẍ + p1ẋ + p0x = 0, then their
Wronskian

W (t ) =
∣∣∣∣y(t ) z(t )
ẏ(t ) ż(t )

∣∣∣∣= y(t ) ż(t )− ẏ(t ) z(t )

satisfies
Ẇ (t ) =−p1(t )W (t ),

and hence

W (t ) = exp

(
−

∫ t

0
p1(s)d s

)
W (0).

The inhomogeneous case

Now to the question of finding a particular solution xpart(t ) of the inhomogeneous system

ẋ− A(t )x = f(t ),

supposing that we already know the general solution xhom(t) of the homogeneous equation. (In other
words, supposing that we know a fundamental matrix.) This can be done by a method called variation
of constants, variation of parameters or Lagrange’s method, as follows:

Theorem (Variation of constants). IfΦ(t ) is a fundamental matrix for the homogeneous system, then

xpart(t ) =Φ(t )
∫ t

0
Φ(s)−1 f(s)d s

is a particular solution of the inhomogeneous system.

Proof. The fundamental matrix satisfies Φ̇= AΦ (by definition). Make the change of variables

x(t ) =Φ(t )y(t ).

When we substitute this into the system, together with ẋ = Φ̇y+Φ ẏ, we obtain

ẋ(t )− A(t )x(t ) = f(t )

⇐⇒ Φ̇(t )y(t )+Φ(t ) ẏ(t )− A(t )Φ(t )y(t ) = f(t )

⇐⇒
(
Φ̇(t )− A(t )Φ(t )

)
︸ ︷︷ ︸

=0

y(t )+Φ(t ) ẏ(t ) = f(t )

⇐⇒ Φ(t ) ẏ(t ) = f(t )

⇐⇒ ẏ(t ) =Φ(t )−1 f(t ).

(We know thatΦ(t )−1 exists for every t , since the Wronskian W (t ) = detΦ(t ) is never zero, by Liouville’s
identity.) Now just change t to s, integrate both sides from (say) 0 to t to find a particular y(t) which
works, and go back to the old variables x. Done!
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Remark. There is no need to memorize the solution formula; just repeat the procedure in the proof
every time you need it! The reason for the funny name “variation of constants” is that the general solution
of the homogeneous system is

xhom(t ) =Φ(t )c,

where c = (c1, . . . ,cn)T is an arbitrary constant vector, and the idea here is to try to find a particular
solution by “letting the constants ck vary”, i.e., by replacing them with the time-dependent quantities

y(t ) = (
y1(t ), . . . , yn(t )

)T :
xpart(t ) =Φ(t )y(t ).

Back to single second-order (or higher-order) ODEs

Now consider again a single linear ODE of order n, with time-dependent coefficients:

d n x

d t n +pn−1(t )
d n−1x

d t n−1 +·· ·+p1(t )
d x

d t
+p0(t ) x = f (t ).

The general solution of this inhomogeneous equation equals one particular solution plus the general
solution of the homogeneous equation

d n x

d t n +pn−1(t )
d n−1x

d t n−1 +·· ·+p1(t )
d x

d t
+p0(t ) x = 0.

The first question is how we may find a basis for the n-dimensional solution space of the homogeneous
equation. Sometimes we might get lucky and find one solution (by inspired guessing or power series
methods or something else). This can then be used for finding other solutions, by the following simple
trick:

Theorem (Reduction of order). Suppose x0(t ) is a known solution of the homogeneous equation. Then
the substitution x(t ) = Y (t ) x0(t ) leads to a homogeneous equation of order n −1 for y(t ) = Ẏ (t ).

Proof. Substitute
x = Y x0,

ẋ = Ẏ x0 +Y ẋ0,

ẍ = Ÿ x0 +2Ẏ ẋ0 +Y ẍ0,
...

into the homogeneous ODE for x. Then the coeffient of Y will be x(n)
0 +pn−1 x(n−1)

0 +·· ·+p1 ẋ0 +p0 x0,
which equals zero by assumption. Thus only Ẏ , Ÿ , . . . ,Y (n) appear in the equation, so if we let y = Ẏ we
get an equation involving only y, ẏ , . . . , y (n−1).

Remark. The reduced equation always has the trivial solution y(t ) = 0, which gives Y (t ) =C . But this is
quite uninteresting, since x(t ) = Y (t ) x0(t ) =C x0(t ) is then just a constant multiple of the already known
solution x0(t ).

Remark. If we manage to find a solution of a second-order homogenous linear ODE, then reduction of
order gives a first-order equation, which means that we can find a nontrivial solution with the help of an
integrating factor. We can then integrate this solution y(t ) to find a non-constant Y (t ), and hence find a
second linearly independent solution x(t ) = Y (t ) x0(t ). So in this case x0(t ) and Y (t ) x0(t ) will be a basis
of the solution space.

For finding a particular solution of the inhomogeneous equation, we have the method of variation
of constants, as a special case of what we did for systems. Rewrite the ODE as a first-order system by
letting x1 = x, x2 = ẋ, etc.:

ẋ1

ẋ2
...

ẋn−1

ẋn

=


x2

x3
...

xn

f (t )−∑n
k=1 pk−1(t ) xk

=


0 1

0 1
. . .

0 1
−p0(t ) −p1(t ) · · · −pn−2(t ) −pn−1(t )




x1

x2
...

xn−1

xn

+


0
0
...
0

f (t )


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[Back to lecture plan]

Let’s look at the case n = 3 to simplify notation:ẋ1

ẋ2

ẋ3

=
 x2

x3

f (t )−p0(t ) x1 −p1(t ) x2 −p2(t ) x3

=
 0 1 0

0 0 1
−p0(t ) −p1(t ) −p2(t )

x1

x2

x3

+
 0

0
f (t )


The method requires that we already know the general solution xhom of the homogeneous equation, say

xhom(t ) = c1g1(t )+ c2g2(t )+ c3g3(t )

where (g1, g2, g3) is a known basis for the solution space. We are going to seek a particular solution by
“letting the constants ck vary”, i.e., replacing ck by yk (t ):

xpart(t ) = y1(t ) g1(t )+ y2(t ) g2(t )+ y3(t ) g3(t ).

In terms of the first-order system, this means that

Φ(t ) =
g1 g2 g3

ġ1 ġ2 ġ3

g̈1 g̈2 g̈3


is a fundamental matrix, and we are making the substitution x(t ) =Φ(t )y(t ). Simply remembering what
we did for systems above, we know that this leads toΦ(t ) ẏ = f(t ):g1 g2 g3

ġ1 ġ2 ġ3

g̈1 g̈2 g̈3

ẏ1

ẏ2

ẏ3

=
 0

0
f (t )

 .

This system of equations determines ẏ, which we can then integrate to find y, and hence xpart.

Remark. Books which deal only with single higher-order ODEs usually present the method of variation
of constants in the following way, which in my opinion is rather obscure! Start with

x = y1g1 + y2g2 + y3g3.

Take the first derivative:
ẋ = (ẏ1g1 + ẏ2g2 + ẏ3g3)+ (y1 ġ1 + y2 ġ2 + y3 ġ3).

For some mysterious reason (“just because it works”), we require the first bracket to be zero: ẏ1g1 +
ẏ2g2 + ẏ3g3 = 0. So only the second bracket remains in ẋ = y1 ġ1 + y2 ġ2 + y3 ġ3, and taking the derivative
of this gives

ẍ = (ẏ1 ġ1 + ẏ2 ġ2 + ẏ3 ġ3)+ (y1 g̈1 + y2 g̈2 + y3 g̈3).

Again we require the first bracket to be zero: ẏ1 ġ1+ ẏ2 ġ2+ ẏ3 ġ3 = 0. This leaves ẍ = y1 g̈1+ y2 g̈2+ y3 g̈3, so

...
x = (ẏ1 g̈1 + ẏ2 g̈2 + ẏ3 g̈3)+ (y1

...
g 1 + y2

...
g 2 + y3

...
g 3)

Now using that g1, g2 and g3 satsify the homogeneous equation, we find after some computation that if
we want x to satisfy the inhomogeneous equation, then we must require the first bracket here to satisfy
ẏ1 g̈1 + ẏ2 g̈2 + ẏ3 g̈3 = f . These three requirements are exactly the matrix equationΦ ẏ = f that we found
above in a much simpler way, using systems and matrix algebra.

Lesson 10

• Reduction of order: A15, A16 (A16b).

• Variation of constants: A17 (A17c).

• Wronskians: A18.
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Additional problems for lesson 10

A15 Determine α2 so that that the Bessel equation

t 2ẍ + t ẋ + (t 2 −α2) x = 0 (t > 0)

has a solution x0(t ) = t−1/2 sin t , and use reduction of order to find another (linearly independent)
solution.

[Answer: α2 = 1/4, x(t ) = t−1/2 cos t .]

A16 (a) The usual method with the characteristic polynomial says that x(t) = Ae2t +Be3t is the
general solution of ẍ −5ẋ +6x = 0. Give a direct proof that this really is the most general
solution, by applying reduction of order using the known solution x0(t ) = e2t .

(b) Similarly, show that x(t ) = (At +B)e−3t is the general solution of ẍ +6ẋ +9x = 0, by applying
reduction of order with x0(t ) = e−3t .

(If you look back in your calculus book, you will probably find arguments like these in the section
explaining the theory behind the characteristic polynomial.)

A17 Find the general solution. (Variation of constants is useful for finding a particular solution, at least
in the more difficult cases. But just for practice, use it in the simpler cases as well.)

(a) ẍ +2ẋ +x = 2sin t [Answer: x(t ) = (At +B)e−t −cos t .]

(b) ẍ +9x = cos3t [Answer: x(t ) = A cos3t +B sin3t + 1
6 t sin3t .]

(c) ẍ +x = tan t [Answer: x(t ) = A cos t +B sin t + 1
2 cos t · ln

∣∣ 1−sin t
1+sin t

∣∣.]
(d) ẋ1 = 2x1 −5x2 +4t , ẋ2 = x1 −2x2 +1 [Answer: x1(t ) = A(cos t +2sin t )+B(−5sin t )+8t −1,

x2(t ) = A sin t +B(cos t −2sin t )+4t −2.]

(e) (t 2 −1)ẍ −2t ẋ +2x = t 2 −1 (To find xhom(t ), try a power series solution.)

[Answer: x(t ) = At +B(1+ t 2)− t 2 + t ln
∣∣ 1+t

1−t

∣∣+ 1
2 (1+ t 2) ln

∣∣1− t 2
∣∣.]

(And if you haven’t had enough, you can look back at problem A1.)

A18 (a) Show that there is no second-order ODE ẍ +p1(t ) ẋ +p0(t ) x = 0 whose general solution has
the form x(t ) = At +B cos t .

[Hint: Consider the Wronskian W = y ż − ẏ z of y(t ) = t and z(t ) = cos t .]

(b) Find a 2×2 matrixΦ(t ) such that its columns are linearly independent (as functions of t ), but
detΦ(t ) is zero at some points. [Hint: Same as for (a).]

(c) Show that things can be even worse than in (b): the functions y(t ) = t 3 and z(t ) = |t |3 (t ∈ R)
are linearly independent, but their Wronskian is identically zero.

Lecture 11. Outlook: Poincaré maps, attractors, chaotic systems

(Arrowsmith & Place, selected parts of chapters 4 & 6.)

This material is not strictly a part of the course, but is provided as “entertainment”, and to give a rough
idea of some additional topics which are important in the theory of dynamical systems.

Lesson 11

• Leftovers.
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