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No aids allowed. You may write your answers in English or Swedish (or both).

Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade
n ∈ {3,4,5} you need at least n passed problems and at least 3n −1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

1. Draw the phase portrait for the equation ẋ = (x −1)(x −3), and compute
the solution x(t ) which satisfies the initial condition x(0) = 2.

2. Compute the solution (x1(t), x2(t)) of the system ẋ1 = 5x1 − 15x2, ẋ2 =
3x1 −7x2 with initial values x1(0) = c1, x2(0) = c2.

What type of equilibrium is the origin? In the x1x2-plane, draw the null-
clines with arrows indicating the direction of the vector field, and also
carefully draw the solution curve passing through the point (1,0).

3. Show that the origin is an asymptotically stable equilibrium for the system
ẋ = y −x3 + 1

9 x5, ẏ =−4x − y3 + y5, and determine a domain of stability.

(Hint: look for a strong Liapunov function of the form V (x, y) = x2 +αy2.)

4. Find all equilibrium points for the system ẋ = (x +1)y , ẏ = x2−2x − y , and
use linearization to determine their type. Draw figures indicating what
the local phase portrait near each equilibrium looks like (with the correct
principal directions, in case the eigenvalues are real).

5. (a) For the system in problem 4, show that the line x + y = 2 is invariant.
(That is, any solution starting on that line stays on that line.)

(Hint: What is d
d t (x + y −2)?)

(b) Use this information, together with problem 4, to draw the global
phase portrait.

6. The function x(t ) = e t satisfies the homogeneous ODE t ẍ− (1+ t )ẋ+x = 0.
Use this to find the general solution of t ẍ − (1+ t )ẋ +x = t 2e2t (for t > 0).



Solutions for TATA71 2018-01-13

1. Phase portrait:
x

1 3

The solution satisfying x(0) = 2 is not one of the constant solutions x = 1
or x = 3, so we can find it using separation of variables:∫ x(t )

x(0)

dξ

(ξ−1)(ξ−3)
=

∫ t

0
dτ ⇐⇒

[
1

2
ln

∣∣∣∣ξ−3

ξ−1

∣∣∣∣]x(t )

2
= t .

Since 1 < x(t ) < 3 for all t (according to the phase portrait), we can get rid
of the absolute value signs like this:

ln
3−x(t )

x(t )−1
− ln1 = 2t .

Answer: x(t ) = e2t +3

e2t +1
.

2. The system is

ẋ = Ax, A =
(
5 −15
3 −7

)
,

and the solution of the initial-value problem is

x(t ) = e At x(0).

The eigenvalues of A are a ± i b = −1± 3i , and a complex eigenvector
corresponding to the eigenvalue −1+3i is(

2+ i
1

)
=

(
2
1

)
+ i

(
1
0

)
.

We know that taking the imaginary part and the real part as columns in

M =
(
1 2
0 1

)
gives the transformation to normal form,

J = M−1 AM =
(

a −b
b a

)
=

(−1 −3
3 −1

)
, A = M J M−1.



Hence the solution is

x(t ) = e At x(0) = Me J t M−1x(0)

= e−t
(
1 2
0 1

)(
cos3t −sin3t
sin3t cos3t

)(
1 −2
0 1

)(
c1

c2

)
= e−t

(
cos3t +2sin3t −5sin3t

sin3t cos3t −2sin3t

)(
c1

c2

)
.

The origin is a stable focus, with orbits spiralling counterclockwise in-
wards.

ẋ1 = 0 ⇐⇒ x1 = 3x2

ẋ2 = 0 ⇐⇒ 3x1 = 7x2

↑

↓

←

→
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3. With V (x, y) = x2 +αy2, we compute V̇ = 2xẋ +2αy ẏ = 2x(y −x3 + 1
9 x5)+

2αy(−4x − y3 + y5) = 2(1−4α)x y −2x4 + 2
9 x6 −2αy4 +2αy6. With α= 1/4,

the x y term vanishes, and we get

V = x2 + 1
4 y2, V̇ =−2x4(1− 1

9 x2)− 1
2 y4(1− y2).

Then V is positive definite, and V̇ is negative definite in the open set
Ω = {

(x, y) ∈ R2 : |x| < 3, |y | < 1
}
, so by Liapunov’s theorem the origin is

asymptotically stable.

If B is an origin-centered closed disc which fits insideΩ (i.e., with radius
r < 1), then the smallest value of V on the boundary of B is V (0,±r ) = 1

4 r 2,
and the set

{
(x, y) ∈ B : V (x, y) < 1

4 r 2
}

is a domain of stability. Since this is
true for any r < 1, the ellipse{

(x, y) ∈ B : V (x, y) < 1
4

}= {
(x, y) ∈ R2 : 4x2 + y2 < 1

}
is a domain of stability.



4. The equilibrium points are given by ẋ = (x+1)y = 0 and ẏ = x2−2x− y = 0.
The first equation gives x =−1 or y = 0, which together with the second
equation gives y = 3 or x ∈ {0,2}, respectively. So the equilibria are (−1,3),
(0,0) and (2,0).

The Jacobian matrix of the system is

A(x, y) =
(

y x +1
2x −2 −1

)
,

and in particular

A(−1,3) =
(

3 0
−4 −1

)
, A(0,0) =

(
0 1
−2 −1

)
, A(2,0) =

(
0 3
2 −1

)
.

This shows that (−1,3) is a saddle, with principal directions given by the
eigenvectors (−1,1)T for the positive eigenvalue λ= 3 and (0,1)T for the
negative eigenvalue λ = −1. Likewise, (2,0) is a saddle, with principal
directions (3,2)T for λ = 2 and (−1,1)T for λ = −3. And (0,0) is a stable
focus, since tr(A) =−1 < 0 and det(A) = 2 > tr(A)2/4.

For illustrations of the local phase portraits, zoom in near the equilibrium
points in the global phase portrait in problem 5 below.



5. (a) If (x(t ), y(t )) is a solution of the system, then d
d t (x+y−2) = ẋ+ ẏ−0 =

(x +1)y + (x2 −2x − y) = x2 + x y −2x = x(x + y −2), so the quantity
u(t) = x(t)+ y(t)− 2 will stay zero if it equals zero initially. Thus,
solutions starting on the line x + y −2 = 0 stay there.

[Actually the equation u̇ = xu tells us even more, namely that u(t) will

increase in absolute value if x(t) > 0; in other words, as long as a solution

curve lies in the right half plane, it will keep increasing its distance to the

line x + y = 2. Similarly, all solutions in the left half plane x < 0 move closer

and closer to the line x + y = 2.]

(b) Phase portrait:

ẋ = 0 ⇐⇒ x =−1 or y = 0

ẏ = 0 ⇐⇒ y = x2 −2x

x

y



6. First we use reduction of order to find another, linearly independent,
solution of the homogeneous equation. With x(t ) = e t Y (t ) and y(t ) = Ẏ (t )
we get

0 = t ẍ−(1+t )ẋ+x = e t
(
t (Ÿ +2Ẏ +Y )−(t+1)(Ẏ +Y )+Y

)
= e t (t ẏ+(t−1)y

)
.

For t > 0 this is equivalent to ẏ + (1− t−1)y = 0, which we multiply by
the integrating factor exp(t − ln t ) = e t /t to obtain d

d t (y(t )e t /t) = 0. Thus
y(t) = C te−t , which gives Y (t) = ∫

y(t)d t = −C (t +1)e−t +D. Since we
are only looking for one solution, we take C = −1 and D = 0, so Y (t) =
(t +1)e−t , and consequently x(t) = e t Y (t) = t +1. Now we know that the
general solution of the homogeneous equation is x(t ) =C1(t +1)+C2e t .

Next, rewrite the inhomogeneous equation t ẍ− (1+ t )ẋ+x = t 2e2t , first as
ẍ−(1+ t−1)ẋ+ t−1x = te2t , and then (with x1 = x and x2 = ẋ) as the system(

ẋ1

ẋ2

)
=

(
0 1

−t−1 1+ t−1

)(
x1

x2

)
+

(
0

te2t

)
.

A fundamental matrix for the homogeneous system is

Φ(t ) =
(

t +1 e t

d
d t (t +1) d

d t e t

)
=

(
t +1 e t

1 e t

)
,

and the “variation of constants” substitution x(t) =Φ(t)y(t) leads in the
usual way to

ẏ(t ) =Φ(t )−1
(

0
te2t

)
= 1

te t

(
e t −e t

−1 t +1

)(
0

te2t

)
=

( −e2t

(t +1)e t

)
.

Integrating (and omitting constants of integration, since we are only look-
ing for one particular solution), we find

y(t ) =
(−1

2 e2t

te t

)
and finally the particular solution

x(t ) = x1(t ) =Φ(t )row 1 y(t ) = (t +1,e t )

(−1
2 e2t

te t

)
= 1

2 (t −1)e2t .

Answer: x(t ) = c1(t +1)+ c2e t + 1
2 (t −1)e2t .


