Matematiska institutionen

TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2018-04-04 kl. 14.00-19.00

No aids allowed. You may write your answers in English or Swedish (or both). Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade $n \in\{3,4,5\}$ you need at least n passed problems and at least $3 n-1$ points.
Solutions will be posted on the course webpage afterwards. Good luck!

1. Compute the general solution of the linear system

$$
\dot{x}=2 y, \quad \dot{y}=x-y
$$

and sketch the phase portrait. Draw in particular, as precisely as you can, the trajectory through the point $(2,1)$ and the one through $(0,-1)$.
2. Transform the system

$$
\dot{x}=x\left(4-x^{2}-y^{2}\right)-10 y, \quad \dot{y}=y\left(4-x^{2}-y^{2}\right)+10 x
$$

into polar coordinates. Sketch the phase portrait. Are there any limit cycles? If so, investigate their stability.
3. Use linearization to classify all equilibrium points of the system

$$
\dot{x}=x^{2}-x y, \quad \dot{y}=2-x^{3}-y .
$$

Sketch the phase portrait.
4. Write the second-order ODE $\ddot{x}=x^{3}-x$ as a first-order system by letting $y=\dot{x}$. Determine a constant of motion $F(x, y)$ for the system, and sketch the phase portrait. For which initial data $x(0)=a, \dot{x}(0)=b$ is the solution of the original ODE periodic?
5. Show that the origin is a globally asymptotically stable equilibrium for the system

$$
\dot{x}=-2 x+3 y-y^{3}, \quad \dot{y}=-x+y-y^{3} .
$$

(Hint: look for a strong Liapunov function $V(x, y)=x^{2}+a x y+b y^{2}$.)
6. Derive a formula for the solution $x(t)$ of the initial value problem

$$
\left(2 t^{2}+1\right) \ddot{x}(t)-4 t \dot{x}(t)+4 x(t)=f(t), \quad x(0)=a, \quad \dot{x}(0)=b,
$$

in terms of an integral involving the function f. (Hint: $x(t)=2 t^{2}-1$ is a solution of the homogeneous equation.)

Solutions for TATA71 2018-04-04

1. From the eigenvalues and eigenvectors of the system matrix

$$
\left(\begin{array}{cc}
0 & 2 \\
1 & -1
\end{array}\right)
$$

we obtain the general solution

$$
\binom{x(t)}{y(t)}=C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+C_{1} e^{\lambda_{2} t} \mathbf{v}_{2}=C_{1} e^{t}\binom{2}{1}+C_{2} e^{-2 t}\binom{-1}{1} .
$$

Since there is one positive and one negative eigenvalue, the origin is a saddle point. The trajectory through $(2,1)$ is a half-line from the origin. The trajectory through $(-1,0)$ is a curve with the lines $y=x / 2$ and $y=-x$ as asymptotes; it has the direction $(-2,1)^{T}$ when it passes the point $(0,-1)$, and its highest point is when it crosses the nullcline $y=x$.
For a sketch of the phase portrait, type "streamplot $\{2 \mathrm{y}, \mathrm{x}-\mathrm{y}\}$ " into Wolfram Alpha (or simply click on the link).
2. The usual formulas $r \dot{r}=x \dot{x}+y \dot{y}$ and $r^{2} \dot{\theta}=-y \dot{x}+x \dot{y}$ give the decoupled system

$$
\dot{r}=r\left(4-r^{2}\right), \quad \dot{\theta}=10 .
$$

For $r \geq 0$, the one-dimensional phase portrait for the r equation is

$$
0 \longrightarrow 2 \longleftarrow
$$

so $r=2$ is a stable equilibrium, which corresponds to the origin-centered circle of radius 2 being a stable limit cycle for the original system. The other trajectories spiral towards this circle, counter-clockwise since $\dot{\theta}>0$. There is also an equilibrium at $(0,0)$, which is an unstable spiral, which we can see from the above, or from the fact that the linearized system

$$
\dot{x}=4 x-10 y, \quad \dot{y}=10 x+4 y
$$

has the eigenvalues $4 \pm 10 i$.
[Link to phase portrait.]
3. We have $\dot{x}=0$ iff $x=0$ or $y=x$. Inserting this into the equation $\dot{y}=0$, we find the equilibrium points $(x, y)=(0,2)$ and $(1,1)$. The Jacobian matrix is

$$
A(x, y)=\left(\begin{array}{cc}
2 x-y & -x \\
-3 x^{2} & -1
\end{array}\right), \quad A(0,2)=\left(\begin{array}{cc}
-2 & 0 \\
0 & -1
\end{array}\right), \quad A(1,1)=\left(\begin{array}{cc}
1 & -1 \\
-3 & -1
\end{array}\right) .
$$

Thus, $(0,2)$ is a stable node since $A(0,2)$ obviously has the negative eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=-1$, with the principal directions $(1,0)^{T}$ and $(0,1)^{T}$. And $(1,1)$ is a saddle (hence unstable) since $\operatorname{det} A(1,1)<0$; the principal directions are $(1,3)^{T}$ (for $\left.\lambda_{1}=-2\right)$ and $(-1,1)^{T}$ (for $\lambda_{2}=2$).
[Link to phase portrait.]
4. The second-order system is

$$
\dot{x}=y, \quad \dot{y}=x^{3}-x .
$$

This gives $d y / d x=\dot{y} / \dot{x}=\left(x^{3}-x\right) / y$, so that $\int y d y=\int\left(x^{3}-x\right) d x$, i.e., $\frac{1}{2} y^{2}=\frac{1}{4} x^{4}-\frac{1}{2} x^{2}+C$. So we find the constant of motion

$$
F(x, y)=x^{2}+y^{2}-\frac{1}{2} x^{4}
$$

(In the derivation, we excluded the case $y=0$, but direct computation shows that $\dot{F}=0$ always, so this is nothing to worry about.)

The linearization at the origin is $\dot{x}=y, \dot{y}=-x$, hence a centre, which gives no information about the nonlinear system, but since we have the constant of motion F we can say that $(0,0)$ is actually a nonlinear centre surrounded by closed curves (level curves of F). We have $F(x, y) \approx x^{2}+y^{2}$ close to the origin, so the level curves there are approximately circles. The other equilibria are ($\pm 1,0$), and they are connected by the level curve $F=1 / 4$. Inside this curve, we get periodic solutions, outside not. In formulas: the solution is periodic iff $a^{2}+b^{2}-\frac{1}{2} b^{4}<\frac{1}{4}$ and $|a|<1$.
[Link to phase portrait.]
5. With $V(x, y)=x^{2}+a x y+b y^{2}$, we compute

$$
\begin{aligned}
\dot{V} & =V_{x} \dot{x}+V_{y} \dot{y} \\
& =(2 x+a y)\left(-2 x+3 y-y^{3}\right)+(a x+2 b y)\left(-x+y-y^{3}\right) \\
& =-(a+4) x^{2}+(6-a-2 b) x y+(3 a+2 b) y^{2}-(a+2 b) y^{4}-(2+a) x y^{3} .
\end{aligned}
$$

The term $x y^{3}$ seems difficult to control, so we eliminate it by choosing $a=-2$, leaving

$$
V=x^{2}-2 x y+b y^{2}=(x-y)^{2}+(b-1) y^{2}
$$

and

$$
\dot{V}=-2 x^{2}+(8-2 b) x y+(2 b-6) y^{2}-(2 b-2) y^{4} .
$$

Now V is positive definite iff $b-1>0$, and we also need $2 b-6<0$ if there's going to be any chance for \dot{V} to be negative definite. So we must have $1<b<3$. Trying $b=2$ gives

$$
V=(x-y)^{2}+y^{2}, \quad \dot{V}=-2(x-y)^{2}-2 y^{4} .
$$

It worked! We see that V is positive definite and \dot{V} is negative definite, and moreover $V(x, y) \rightarrow \infty$ as $\sqrt{x^{2}+y^{2}} \rightarrow \infty$, so $(0,0)$ is globally asymptotically stable.
6. We were given one solution $x_{1}(t)=2 t^{2}-1$ of the homogeneous equation, and a linearly independent solution $x_{2}(t)=t$ can be found by reduction of order (or by inspection). Now we can use "variation of constants". The corresponding first-order system

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
0 & 1 \\
-4 /\left(1+2 t^{2}\right) & 4 t /\left(1+2 t^{2}\right)
\end{array}\right)\binom{x}{y}+\binom{0}{f(t) /\left(1+2 t^{2}\right)}
$$

has the fundamental matrix

$$
\Phi(t)=\left(\begin{array}{cc}
-x_{1} & x_{2} \\
-\dot{x}_{1} & \dot{x}_{2}
\end{array}\right)=\left(\begin{array}{cc}
1-2 t^{2} & t \\
-4 t & 1
\end{array}\right),
$$

where (for convenience) the signs are chosen such that $\Phi(0)=I$. The new unknowns u and v defined by

$$
\binom{x(t)}{y(t)}=\Phi(t)\binom{u(t)}{v(t)}
$$

then satisfy

$$
\binom{\dot{u}}{\dot{v}}=\Phi(t)^{-1}\binom{0}{f(t) /\left(1+2 t^{2}\right)}=\frac{1}{1+2 t^{2}}\left(\begin{array}{cc}
1 & -t \\
4 t & 1-2 t^{2}
\end{array}\right)\binom{0}{f(t) /\left(1+2 t^{2}\right)}=\frac{f(t)}{\left(1+2 t^{2}\right)^{2}}\binom{-t}{1-2 t^{2}}
$$

and

$$
u(0)=x(0)=a, \quad v(0)=y(0)=\dot{x}(0)=b,
$$

so that

$$
u(t)=a+\int_{0}^{t} \frac{-s f(s)}{\left(1+2 s^{2}\right)^{2}} d s, \quad v(t)=b+\int_{0}^{t} \frac{\left(1-2 s^{2}\right) f(s)}{\left(1+2 s^{2}\right)^{2}} d s
$$

Finally, we get the answer from $x(t)=\Phi_{11}(t) u(t)+\Phi_{12}(t) u(t)$:

$$
x(t)=a\left(1-2 t^{2}\right)+b t+\int_{0}^{t} \frac{\left(-\left(1-2 t^{2}\right) s+t\left(1-2 s^{2}\right)\right) f(s)}{\left(1+2 s^{2}\right)^{2}} d s
$$

