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TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2019-01-18 kl. 8.00–13.00

No aids allowed. You may write your answers in English or Swedish (or both).

Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade
n ∈ {3,4,5} you need at least n passed problems and at least 3n −1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

1. Compute the general solution of the linear system

ẋ = 2y, ẏ = x − y

and sketch the phase portrait. Draw in particular, as precisely as you can,
the trajectory through the point (2,1) and the one through (0,−1).

2. Transform the system

ẋ = x(4−x2 − y2)−10y, ẏ = y(4−x2 − y2)+10x

into polar coordinates, and use this to sketch the phase portrait. Are there
any limit cycles? If so, investigate their stability.

3. Use linearization to classify all equilibrium points of the system

ẋ = x2 −x y, ẏ = 2−x3 − y.

Sketch the phase portrait.

4. Write the second-order ODE ẍ = x3 − x as a first-order system by letting
y = ẋ. Determine a constant of motion F (x, y) for the system, and sketch
the phase portrait. For which initial data x(0) = a, ẋ(0) = b is the solution
of the original ODE periodic?

5. Show that the origin is a globally asymptotically stable equilibrium for the
system

ẋ =−2x +3y − y3, ẏ =−x + y − y3.

(Hint: look for a strong Liapunov function V (x, y) = x2 +ax y +2y2.)

6. Derive a formula for the solution x(t ) of the initial value problem

(2t 2 +1)ẍ(t )−4t ẋ(t )+4x(t ) = f (t ), x(0) = a, ẋ(0) = b,

in terms of an integral involving the function f .

(Hint: x(t ) = 1−2t 2 and x(t ) = t satisfy the homogeneous equation.)



Solutions for TATA71 2019-01-18

1. From the eigenvalues and eigenvectors of the system matrix(
0 2
1 −1

)
we obtain the general solution(

x(t )
y(t )

)
=C1eλ1t v1 +C1eλ2t v2 =C1e t

(
2
1

)
+C2e−2t

(−1
1

)
.

Since there is one positive and one negative eigenvalue, the origin is a
saddle point. The trajectory through (2,1) is a half-line from the origin.
The trajectory through (−1,0) is a curve with the lines y = x/2 and y =−x
as asymptotes; it has the direction (−2,1)T when it passes the point (0,−1),
and its highest point is when it crosses the nullcline y = x.

For a sketch of the phase portrait, type “streamplot {2y,x-y}” into Wolfram
Alpha (or simply click on the link).

2. The usual formulas r ṙ = xẋ + y ẏ and r 2θ̇ =−y ẋ +x ẏ give the decoupled
system

ṙ = r (4− r 2), θ̇ = 10.

For r ≥ 0, the one-dimensional phase portrait for the r equation is

0 −→ 2 ←−

so r = 2 is a stable equilibrium, which corresponds to the origin-centered
circle of radius 2 being a stable limit cycle for the original system. The
other trajectories spiral towards this circle, counter-clockwise since θ̇ > 0.
There is also an equilibrium at (0,0), which is an unstable spiral, which we
can see from the above, or from the fact that the linearized system

ẋ = 4x −10y, ẏ = 10x +4y

has the eigenvalues 4±10i .

(I don’t expect you to sketch the nullclines for this system; the equations
are a bit too complicated for doing that by hand.)

[Link to phase portrait.]

http://www.wolframalpha.com/input/?i=streamplot+%7B2y,x-y%7D
http://www.wolframalpha.com/input/?i=streamplot+%7Bx(4-x%5E2-y%5E2)-10y,y(4-x%5E2-y%5E2)%2B10x%7D,%7Bx,-6,6%7D,%7By,-6,6%7D


3. We have ẋ = 0 iff x = 0 or y = x. Inserting this into the equation ẏ = 0, we
find the equilibrium points (x, y) = (0,2) and (1,1). The Jacobian matrix is

A(x, y) =
(
2x − y −x
−3x2 −1

)
, A(0,2) =

(−2 0
0 −1

)
, A(1,1) =

(
1 −1
−3 −1

)
.

Thus, (0,2) is a stable node since A(0,2) obviously has the negative eigen-
values λ1 =−2 and λ2 =−1, with the principal directions (1,0)T and (0,1)T .
And (1,1) is a saddle (hence unstable) since det A(1,1) < 0; the principal
directions are (1,3)T (for λ1 =−2) and (−1,1)T (for λ2 = 2).

[Link to phase portrait.]

4. The first-order system is

ẋ = y, ẏ = x3 −x.

This gives d y/d x = ẏ/ẋ = (x3 − x)/y , so that
∫

y d y = ∫
(x3 − x)d x, i.e.,

1
2 y2 = 1

4 x4 − 1
2 x2 +C . So we find the constant of motion

F (x, y) = x2 + y2 − 1
2 x4.

(In the derivation, we excluded the case y = 0, but direct computation
shows that Ḟ = 0 always, so this is nothing to worry about.)

The linearization at the origin is ẋ = y , ẏ = −x, hence a centre, which
gives no information about the nonlinear system, but since we have the
constant of motion F we can say that (0,0) is actually a nonlinear centre
surrounded by closed curves (level curves of F ). We have F (x, y) ≈ x2 + y2

close to the origin, so the level curves there are approximately circles.
The other equilibria are (±1,0), and they are connected by the level curve
F = 1/2, which happens to be a union of two parabolas:

F (x, y) = x2 + y2 − 1
2 x4 = 1

2 ⇐⇒ y2 = 1
2 (x2 −1)2 ⇐⇒ y =±x2 −1p

2
.

Inside the bounded region formed by these parabolas, we get periodic
solutions, outside not. In formulas: the solution is periodic iff a2 +b2 −
1
2 b4 < 1

2 and |a| < 1. That is, iff −1 < a < 1 and a2 −1 <p
2b < 1−a2.

Links to some level curves: [F = 1
4 ], [F = 1

2 ], [F = 1]. [Link to phase portrait.]

5. With V (x, y) = x2 +ax y +2y2, we compute

V̇ =Vx ẋ +Vy ẏ

= (2x +ay)(−2x +3y − y3)+ (ax +4y)(−x + y − y3)

=−(a +4)x2 + (2−a)x y + (3a +4)y2 − (a +4)y4 − (2+a)x y3.

http://www.wolframalpha.com/input/?i=streamplot+%7Bx(x-y),(2-x%5E3-y)%7D,%7Bx,-4,4%7D,%7By,-4,4%7D
https://www.wolframalpha.com/input/?i=plot+x%5E2%2By%5E2-x%5E4%2F2%3D1%2F4,%7Bx,-3,3%7D,%7By,-3,3%7D
https://www.wolframalpha.com/input/?i=plot+x%5E2%2By%5E2-x%5E4%2F2%3D1%2F2,%7Bx,-3,3%7D,%7By,-3,3%7D
https://www.wolframalpha.com/input/?i=plot+x%5E2%2By%5E2-x%5E4%2F2%3D1,%7Bx,-3,3%7D,%7By,-3,3%7D
http://www.wolframalpha.com/input/?i=streamplot+%7By,x%5E3-x%7D,%7Bx,-3,3%7D,%7By,-3,3%7D


The term x y3 seems difficult to control, so we eliminate it by choosing
a =−2, leaving

V = x2 −2x y +2y2 = (x − y)2 + y2,

which is positive definite, and

V̇ =−2x2 +4x y −2y2 −2y4 =−2(x − y)2 −2y4,

which is negative definite. Thus V is a strong Liapunov function, and
moreover V (x, y) →∞ as

√
x2 + y2 →∞, so (0,0) is globally asymptotically

stable.

6. We were given two linearly independent solutions of the homogeneous
equation, x1(t) = 1−2t 2 and x2(t) = t , so the corresponding first-order
system (with y = ẋ),(

ẋ
ẏ

)
=

(
0 1

−4/(1+2t 2) 4t/(1+2t 2)

)(
x
y

)
+

(
0

f (t )/(1+2t 2)

)
,

has the fundamental matrix

Φ(t ) =
(

x1 x2

ẋ1 ẋ2

)
=

(
1−2t 2 t
−4t 1

)
.

Now we can use “variation of constants”: the usual calculation shows that
the new unknowns u and v defined by(

x(t )
y(t )

)
=Φ(t )

(
u(t )
v(t )

)
satisfy(

u̇
v̇

)
=Φ(t )−1

(
0

f (t )
1+2t 2

)
= 1

1+2t 2

(
1 −t

4t 1−2t 2

)(
0

f (t )
1+2t 2

)
= f (t )

(1+2t 2)2

( −t
1−2t 2

)
and (sinceΦ(0) = I )

u(0) = x(0) = a, v(0) = y(0) = ẋ(0) = b,

so that

u(t ) = a +
∫ t

0

−s f (s)

(1+2s2)2
d s, v(t ) = b +

∫ t

0

(1−2s2) f (s)

(1+2s2)2
d s.

Finally, we get the answer from x(t ) =Φ11(t )u(t )+Φ12(t )v(t ):

x(t ) = a (1−2t 2)+b t +
∫ t

0

(
(2t 2 −1)s + t (1−2s2)

)
f (s)

(1+2s2)2
d s.


