Matematiska institutionen

TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2019-04-24 kl. 14.00-19.00

No aids allowed. You may write your answers in English or Swedish (or both). Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade $n \in\{3,4,5\}$ you need at least n passed problems and at least $3 n-1$ points.
Solutions will be posted on the course webpage afterwards. Good luck!

1. Draw the phase portrait for the logistic equation

$$
\dot{x}=r x\left(1-\frac{x}{K}\right), \quad r>0, \quad K>0
$$

and derive the exact formula for the general solution in terms of $x(0)=x_{0}$.
2. Sketch the phase portrait for the linear system

$$
\dot{x}=-5 y / 4, \quad \dot{y}=2 x-y .
$$

Determine an explicit formula for the solution $(x(t), y(t))$ satisfying

$$
x(0)=1, \quad y(0)=0,
$$

and draw that solution curve for $0 \leq t \leq 2 \pi$ in the phase portrait.
3. Sketch the phase portrait for the system

$$
\dot{x}=y-x^{2}, \quad \dot{y}=x^{2}+x-2,
$$

and use linearization to classify the equilibrium points.
4. State and prove the trace-determinant criterion for stability of a simple 2×2 linear system $\dot{\mathbf{x}}=A \mathbf{x}, \mathbf{x} \in \mathbf{R}^{2}, \operatorname{det}(A) \neq 0$.
5. Show that $(0,0)$ is an asymptotically stable equilibrium for the system

$$
\dot{x}=-2 x y, \quad \dot{y}=x^{2}-y^{3}+y^{5},
$$

and determine a domain of stability.
(Hint: Look for a suitable quadratic Liapunov function.)
6. Solve the initital value problem

$$
\left(t^{2}+1\right) \ddot{x}(t)-2 x(t)=0, \quad x(0)=0, \quad \dot{x}(0)=1 .
$$

(Hint: $x(t)=t^{2}+1$ satisfies the ODE.)

Solutions for TATA71 2019-04-24

1. The phase portrait is

$$
\longleftarrow 0 \longrightarrow K \longleftarrow
$$

and the general solution formula is

$$
x(t)=\frac{K x_{0}}{x_{0}+\left(K-x_{0}\right) e^{-r t}}=\frac{K x_{0} e^{r t}}{K+\left(e^{r t}-1\right) x_{0}},
$$

as can be found by separation of variables:

$$
x=0 \quad \text { or } \quad x=K \quad \text { or } \int \frac{d x}{x(1-x / K)}=\int r d t, \quad \text { etc. }
$$

(Alternatively, set $x(t)=1 / y(t)$ to get a linear ODE for y.)
2. The phase portrait is a stable spiral (the trace of the system matrix is -1 , the determinant is $5 / 2$). For graphics, type "streamplot $\{-5 y / 4,2 x-y\}$ " in Wolfram Alpha (or click on the link).

The fastest way of deriving the solution formula is perhaps to write the system as a single second-order ODE $\ddot{x}+\dot{x}+\frac{5}{2} x=0$, whose characteristic polynomial $\lambda^{2}+\lambda+\frac{5}{2}=\left(\lambda+\frac{1}{2}\right)^{2}+\frac{9}{4}$ gives the general solution

$$
x(t)=e^{-t / 2}\left(A \cos \left(\frac{3}{2} t\right)+B \sin \left(\frac{3}{2} t\right)\right)
$$

so that

$$
\begin{aligned}
y(t)=-\frac{4}{5} \dot{x}(t) & =-\frac{4}{5} e^{-t / 2}\left(\left(-\frac{1}{2} A+\frac{3}{2} B\right) \cos \left(\frac{3}{2} t\right)+\left(-\frac{1}{2} B-\frac{3}{2} A\right) \sin \left(\frac{3}{2} t\right)\right) \\
& =\frac{2}{5} e^{-t / 2}\left((A-3 B) \cos \left(\frac{3}{2} t\right)+(3 A+B) \sin \left(\frac{3}{2} t\right)\right) .
\end{aligned}
$$

The initial conditions $x(0)=1$ and $y(0)=0$ give $A=1$ and $B=\frac{1}{3}$, so the particular solution that was asked for is

$$
\begin{aligned}
& x(t)=e^{-t / 2}\left(\cos \left(\frac{3}{2} t\right)+\frac{1}{3} \sin \left(\frac{3}{2} t\right)\right), \\
& y(t)=\frac{4}{3} e^{-t / 2} \sin \left(\frac{3}{2} t\right) .
\end{aligned}
$$

For $0 \leq t \leq 2 \pi$, the spiral goes one and a half lap $\left(\frac{3}{2} \cdot 2 \pi=3 \pi\right)$ around the origin. Graphics: "parametric plot $(\exp (-t / 2)(\cos (3 t / 2)+\sin (3 t / 2) / 3)$, $\left.\exp (-\mathrm{t} / 2) \sin (3 \mathrm{t} / 2)^{*} 4 / 3\right), \mathrm{t}=0 . .2^{*} \mathrm{pi}$.
3. The x-nullcline is the parabola $y=x^{2}$, and the y-nullcline is the union of the lines $x=1$ and $x=-2$. They intersect at the equilibrium points $(x, y)=(1,1)$ and $(x, y)=(-2,4)$. Jacobian matrix:

$$
J(x, y)=\left(\begin{array}{cc}
-2 x & 1 \\
2 x+1 & 0
\end{array}\right), \quad J(1,1)=\left(\begin{array}{cc}
-2 & 1 \\
3 & 0
\end{array}\right), \quad J(-2,4)=\left(\begin{array}{cc}
4 & 1 \\
-3 & 0
\end{array}\right) .
$$

For $(1,1), \operatorname{det}(J)=-3<0$, so it's a saddle point (with eigenvalues -3 and 1 , principal directions $(-1,1)^{T}$ and $\left.(1,3)^{T}\right)$.
For $(-2,4), \beta=\operatorname{tr}(J)=4$ and $\gamma=\operatorname{det}(J)=3$, which lies below the parabola $\gamma=(\beta / 2)^{2}$, so it's an unstable node (with eigenvalues 3 and 1 , principal directions $(-1,1)^{T}$ and $\left.(-1,3)^{T}\right)$.
Phase portrait: "streamplot $\left\{y-x^{\wedge} 2, x^{\wedge} 2+x-2\right\}, x=-5 . .5, y=-5 . .5$ ".
4. Let $\beta=\operatorname{tr}(A)$ and $\gamma=\operatorname{det}(A)$. Since $\gamma \neq 0$ by assumption, $(x, y)=(0,0)$ is the only equilibrium point, and we know that it is asymptotically stable iff the eigenvalues of A have negative real part, and neutrally stable iff they lie on the imaginary axis. The eigenvalues are the roots of the characteristic polynomial $\operatorname{det}(A-\lambda I)=\lambda^{2}-\beta \lambda+\gamma$:

$$
\lambda_{1,2}=\frac{\beta}{2} \pm \sqrt{\left(\frac{\beta}{2}\right)^{2}-\gamma}
$$

If $\gamma<0$, then the square root is real, and greater than $|\beta / 2|$, so in this case there is one negative and one positive eigenvalue, and the origin is unstable (a saddle point). If $\gamma>0$, either the square root is imaginary, or it is real but smaller than $|\beta / 2|$, so in this case the real parts of λ_{1} and λ_{2} both have the same sign as $\beta / 2$; thus, the origin is asymptotically stable if $\beta<0$, neutrally stable if $\beta=0$ and unstable if $\beta>0$.
In conclusion, the criterion is that the origin is asymptotically stable if $\operatorname{tr}(A)<0$ and $\operatorname{det}(A)>0$, neutrally stable if $\operatorname{tr}(A)=0$ and $\operatorname{det}(A)>0$, and unstable otherwise.
5. Try $V(x, y)=a x^{2}+b y^{2}$. The choice $V(x, y)=x^{2}+2 y^{2}$ works; it's positive definite, and

$$
\dot{V}=V_{x} \dot{x}+V_{y} \dot{y}=2 x \cdot(-2 x y)+4 y \cdot\left(x^{2}-y^{3}+y^{5}\right)=-4 y^{4}\left(1-y^{2}\right)
$$

is negative semidefinite in the strip $-1<y<1$, so V is a weak Liapunov function in that strip. We have $V=0$ along the x-axis, but the vector field is $(\dot{x}, \dot{y})=\left(0,2 x^{2}\right)$ when $y=0$, so it points out from the x-axis. Thus, the
only trajectory which is contained in the x-axis is the equilibrium point $(0,0)$ itself, and therefore LaSalle's theorem shows that this equilibrium is asymptotically stable.
For a domain of stability, take the largest sub-level set of V that's contained in the strip: the elliptical region

$$
\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+2 y^{2}<2\right\} .
$$

(Phase portrait: "streamplot $\left\{-2 \mathrm{x} y, \mathrm{x}^{\wedge} 2-\mathrm{y}^{\wedge} 3+\mathrm{y}^{\wedge} 5\right\}, \mathrm{x}=-2 . .2, \mathrm{y}=-2 . .2$ ".)
6. We use reduction of order to find a second solution, linearly independent of the given solution $x_{0}(t)=t^{2}+1$. With $x(t)=x_{0}(t) Y(t)$ and $y(t)=\dot{Y}(t)$, the ODE becomes

$$
\begin{aligned}
0 & =\left(t^{2}+1\right)\left(\ddot{x}_{0} Y+2 \dot{x}_{0} \dot{Y}+x_{0} \ddot{Y}\right)-2 x_{0} Y \\
& =(\underbrace{\left(t^{2}+1\right) \ddot{x}_{0}-2 x_{0}}_{=0}) Y+2\left(t^{2}+1\right) \dot{x}_{0} \dot{Y}+\left(t^{2}+1\right) x_{0} \ddot{Y} \\
& =\left(t^{2}+1\right)\left(2 \cdot 2 t y+\left(t^{2}+1\right) \dot{y}\right),
\end{aligned}
$$

that is,

$$
\dot{y}+\frac{4 t}{t^{2}+1} y=0 .
$$

Multiplication by the integrating factor $\exp \left(\int \frac{4 t}{t^{2}+1} d t\right)=\exp \left(2 \ln \left(t^{2}+1\right)\right)=$ $\left(t^{2}+1\right)^{2}$ gives

$$
\frac{d}{d t}\left(\left(t^{2}+1\right)^{2} y(t)\right)=0
$$

so $y(t)=C /\left(t^{2}+1\right)^{2}$ for some constant C, let's say $C=1$ since we're only looking for one solution. Then

$$
Y(t)=\int y(t) d t=\int \frac{d t}{\left(t^{2}+1\right)^{2}}=\frac{1}{2}\left(\frac{t}{t^{2}+1}+\arctan t\right) \quad(+ \text { constant }) .
$$

(For the computation of this antiderivative, see any calculus textbook, for instance Forsling \& Neymark, Matematisk analys: En variabel, Ex. 5.30.) Thus, the second solution is $x(t)=x_{0}(t) Y(t)=\frac{1}{2}\left(t+\left(t^{2}+1\right) \arctan t\right)$, which happens to satisfy the given initial conditions already, as is seen by a glance at the Maclaurin expansion $x(t)=0+t+O\left(t^{2}\right)$. (In general, one would have to pick a suitable linear combination of the two solutions.)
Answer. $x(t)=\frac{1}{2}\left(t+\left(t^{2}+1\right) \arctan t\right)$.

