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TATA71 Ordinira differentialekvationer och dynamiska system
Tentamen 2019-08-27 kl. 8.00-13.00

No aids allowed. You may write your answers in English or Swedish (or both).

Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade
n € {3,4,5} you need at least n passed problems and at least 3n — 1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

1. (a) Draw the phase portrait for the logistic equation
X
i=rx(1-2),  r>0  K>0.
K
(b) Consider a model for “logistic population growth with harvesting”:
X
s=rx(1-2]-E  E=z0,
K

How does the phase portrait change as the value of the parameter E
increases from 0? At what value of E does the phase portrait start to
look qualitatively different from the original case E = 0?

2. Sketch the phase portrait for the system
i=(x-2(y-x4, y=y-1,
and use linearization to classify the equilibrium points.
3. Determine k such that x(t) = e*’ satisfies the ODE
(P + 1) %) — (2 +2¢+ 1) () + 2t x(£) =0,

and then use reduction of order to find the general solution.

4. Rewrite the system
i=x1-x* =y +y -4 - y (P + yP),
y=yA-x* -y (x* +y* —4) + x(x* + y?)
in terms of polar coordinates, and use this to determine whether there are
any stable or unstable limit cycles.

5. Compute the general (real-valued) solution of the linear system

d (X1) (5 ; 1\) (xl)
— | X2 | = 8 0 1 X2 1.
At ] o -1 2)\x

6. Show that the origin is a globally asymptotically stable equilibrium for the
system
J'c:xy4—2x3—y, y:2x+2x2y3—y7.



Solutions for TATA71 2019-08-27

1. (a) Phase portrait:

— 00— K—

(b) The right-hand side in the logistic equation, f(x) = rx(1 - x/K), is
a quadratic polynomial with zeros x = 0 and x = K, and maximum
f(K/2) = rK/4. Subtracting E shifts the graph of f downwards. For
0 < E < rK/4, there will still be two real zeros x;, (but closer to-
gether), so the phase portrait qualitatively looks the same:

«— x]. —_ x2 «—
But at E = rK/4 there is just a single zero xy:

And for E > rK/4 there are no real zeros:

Answer. The phase portrait changes its character at E = rK/4.

2. The equilibria are given by (x—2)(y—x%) =0and y—1=0,s0 y = 1 to begin
with, and thenx =2 or x = +1,s0 (x, y) = (2,1) or (x, y) = (£1,1). Evaluating
the Jacobian J(x,y) = (J"xz‘g’“x‘z) x;Z) at the equilibria gives J(2,1) =
(3 9) (saddle point), J(1,1) = (3 7!) (unstable node) and J(-1,1) = (¥ 3°)

(saddle point).

Phase portrait: “streamplot {(x-2) (y-xA2),y-1}, x=-3..3, y=-3..3” in Wolfram
Alpha. Note that the lines x =2 and y =1 are invariant.

3. Plugging x = e’ into the ODE, one finds quickly that k = 1 is the only value
that works. So xo(#) = €' is a solution. Let x(#) = Y (£) xo(¢t) = Y (#) e’ and
y(t) = Y (¢). This gives

0=+ i-(F2+2t+1)x+2fx
=P+ (Y +2YV +YV)e = (P +2t+ 1) (Y + Y)e' + 2t Ye!

=e'(P+ DTV +(E-2e+ 1Y) =€ (B + D g+ 220+ Dy),

that is,

) 2t
y+(1— tz_l_l)y:O.


https://www.wolframalpha.com/input/?i=streamplot+%7B(x-2)(y-x%5E2),y-1%7D,x%3D-3..3,y%3D-3..3

Multiplication by the integrating factor exp(¢—In(z>+1)) = e’/ (> +1) gives

d
dt

e 2 —t
(t2+1y(t)):0 — y®)=A"+1e ",

and thus
Y (1) :fy(t)dt:Af(t2+l)e_tdt:—A(t2+2t+3)e‘t+B,

so that the general solution is (if we let C = — A for cosmetic reasons)

x(H) = Y(t)e' = Be' + C(£* + 2t + 3).

. As afirst step, write
x=x(1-rA(?-4) - yr?
y=y(l- r2)(r* —4) + xr2.
This gives

= oo

and . .
= yx_yx = r2

0="—

Since 0 > 0 for r > 0, the motion goes counterclockwise around the origin
(which obviously is an equilibrium). The one-dimensional phase portrait
for the r-equation is (for r = 0) “0 — 1 — 2 <”, which shows that the circle
x? + y? = 1is an unstable limit cycle and the circle x* + y* = 4 is a stable
limit cycle.

. The system matrix

has characteristic polynomial
det(A-AD=2*-71*+191-13= (A - 1)(A* — 61 +13),

so the eigenvalues are 3 + 2i and 1, with eigenvectors

)G L)



respectively. So the change of variables

1 0 0
x= My, M=12 1 1
0 -1 1

brings the system x = Ax to Jordan normal form
3 -2 0
y=M'AMy=Jy, J=|2 3 of,
0 0 1

with the general solution

e3'(Acos2t+ Bsin2t)
y(t) = | e¥'(Asin2¢— Bsin21) |,
Ce!

so the answer is

1 0 0)\/[e3(Acos2t+ Bsin2t)
x()=My(®)=(2 1 1||e*(Asin2t—Bcos2i)
0 -1 1 Ce!

cos2t sin2t 0
= A’ | 2cos2t+sin2t | + Be®! | 2sin2t — cos2t | + Ce’ ,
—sin2t cos2t 1

where A, B and C are arbitrary real constants.

. V(x,y) =2x?+ y? is a weak Liapunov function, since it is positive definite
and
V= a—vfc+ O—Vy =4x(xy* —2x° —y)+2yRx+2x*y -y
0x oy

=8x*yt-8x*-2y8 = —202x* - yH% <0.

The set where V = 0 consists of the two curves x = +y?/v/2, which can be
parametrized as (x, y) = (+s°/+v/2, ). The tangent vector at a typical point
on one of these curves is (Z—’SC, %) = (+v/25,1), and the vector field (x, y) =
(x(y*—2x%)—y,2x+2x* -y y®) reduces to (%, ) = (-y,2x) = (s, +V25%),
which is orthogonal to the tangent vector (and nonzero for s # 0). This
shows that the trajectories, except for the equilibrium point (0, 0) itself,
do not stay on the curves where V = 0, and asymptotic stability therefore
follows from LaSalle’s theorem. For global asymptotic stability, it is enough
to remark that (in addition to the above) V(x, y) — oo as |(x, y)| — oo.



