TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2019-08-27 kl. 8.00-13.00

No aids allowed. You may write your answers in English or Swedish (or both). Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade $n \in\{3,4,5\}$ you need at least n passed problems and at least $3 n-1$ points.
Solutions will be posted on the course webpage afterwards. Good luck!

1. (a) Draw the phase portrait for the logistic equation

$$
\dot{x}=r x\left(1-\frac{x}{K}\right), \quad r>0, \quad K>0 .
$$

(b) Consider a model for "logistic population growth with harvesting":

$$
\dot{x}=r x\left(1-\frac{x}{K}\right)-E, \quad E \geq 0 .
$$

How does the phase portrait change as the value of the parameter E increases from 0 ? At what value of E does the phase portrait start to look qualitatively different from the original case $E=0$?
2. Sketch the phase portrait for the system

$$
\dot{x}=(x-2)\left(y-x^{2}\right), \quad \dot{y}=y-1,
$$

and use linearization to classify the equilibrium points.
3. Determine k such that $x(t)=e^{k t}$ satisfies the ODE

$$
\left(t^{2}+1\right) \ddot{x}(t)-\left(t^{2}+2 t+1\right) \dot{x}(t)+2 t x(t)=0,
$$

and then use reduction of order to find the general solution.
4. Rewrite the system

$$
\begin{aligned}
& \dot{x}=x\left(1-x^{2}-y^{2}\right)\left(x^{2}+y^{2}-4\right)-y\left(x^{2}+y^{2}\right) \\
& \dot{y}=y\left(1-x^{2}-y^{2}\right)\left(x^{2}+y^{2}-4\right)+x\left(x^{2}+y^{2}\right)
\end{aligned}
$$

in terms of polar coordinates, and use this to determine whether there are any stable or unstable limit cycles.
5. Compute the general (real-valued) solution of the linear system

$$
\frac{d}{d t}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{ccc}
5 & -1 & 1 \\
8 & 0 & 1 \\
0 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

6. Show that the origin is a globally asymptotically stable equilibrium for the system

$$
\dot{x}=x y^{4}-2 x^{3}-y, \quad \dot{y}=2 x+2 x^{2} y^{3}-y^{7} .
$$

Solutions for TATA71 2019-08-27

1. (a) Phase portrait:

$$
\longleftarrow 0 \longrightarrow K \longleftarrow
$$

(b) The right-hand side in the logistic equation, $f(x)=r x(1-x / K)$, is a quadratic polynomial with zeros $x=0$ and $x=K$, and maximum $f(K / 2)=r K / 4$. Subtracting E shifts the graph of f downwards. For $0<E<r K / 4$, there will still be two real zeros $x_{1,2}$ (but closer together), so the phase portrait qualitatively looks the same:

$$
\longleftarrow x_{1} \longrightarrow x_{2} \longleftarrow
$$

But at $E=r K / 4$ there is just a single zero x_{0} :
$\longleftarrow x_{0} \longleftarrow$
And for $E>r K / 4$ there are no real zeros:

Answer. The phase portrait changes its character at $E=r K / 4$.
2. The equilibria are given by $(x-2)\left(y-x^{2}\right)=0$ and $y-1=0$, so $y=1$ to begin with, and then $x=2$ or $x= \pm 1$, so $(x, y)=(2,1)$ or $(x, y)=(\pm 1,1)$. Evaluating the Jacobian $J(x, y)=\left(\begin{array}{cc}y-x^{2}-2 x(x-2) & x-2 \\ 0 & 1\end{array}\right)$ at the equilibria gives $J(2,1)=$ $\left(\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right)$ (saddle point), $J(1,1)=\left(\begin{array}{cc}0 & -1 \\ 0 & 1\end{array}\right)$ (unstable node) and $J(-1,1)=\left(\begin{array}{cc}-6 & -3 \\ 0 & 1\end{array}\right)$ (saddle point).

Phase portrait: "streamplot $\left\{(x-2)\left(y-x^{\wedge} 2\right), y-1\right\}, x=-3 . .3, y=-3 . .3$ " in Wolfram Alpha. Note that the lines $x=2$ and $y=1$ are invariant.
3. Plugging $x=e^{k t}$ into the ODE, one finds quickly that $k=1$ is the only value that works. So $x_{0}(t)=e^{t}$ is a solution. Let $x(t)=Y(t) x_{0}(t)=Y(t) e^{t}$ and $y(t)=\dot{Y}(t)$. This gives

$$
\begin{aligned}
0 & =\left(t^{2}+1\right) \ddot{x}-\left(t^{2}+2 t+1\right) \dot{x}+2 t x \\
& =\left(t^{2}+1\right)(\ddot{Y}+2 \dot{Y}+Y) e^{t}-\left(t^{2}+2 t+1\right)(\dot{Y}+Y) e^{t}+2 t Y e^{t} \\
& =e^{t}\left(\left(t^{2}+1\right) \ddot{Y}+\left(t^{2}-2 t+1\right) \dot{Y}\right)=e^{t}\left(\left(t^{2}+1\right) \dot{y}+\left(t^{2}-2 t+1\right) y\right),
\end{aligned}
$$

that is,

$$
\dot{y}+\left(1-\frac{2 t}{t^{2}+1}\right) y=0
$$

Multiplication by the integrating factor $\exp \left(t-\ln \left(t^{2}+1\right)\right)=e^{t} /\left(t^{2}+1\right)$ gives

$$
\frac{d}{d t}\left(\frac{e^{t}}{t^{2}+1} y(t)\right)=0 \quad \Longleftrightarrow \quad y(t)=A\left(t^{2}+1\right) e^{-t}
$$

and thus

$$
Y(t)=\int y(t) d t=A \int\left(t^{2}+1\right) e^{-t} d t=-A\left(t^{2}+2 t+3\right) e^{-t}+B
$$

so that the general solution is (if we let $C=-A$ for cosmetic reasons)

$$
x(t)=Y(t) e^{t}=B e^{t}+C\left(t^{2}+2 t+3\right) .
$$

4. As a first step, write

$$
\begin{aligned}
& \dot{x}=x\left(1-r^{2}\right)\left(r^{2}-4\right)-y r^{2}, \\
& \dot{y}=y\left(1-r^{2}\right)\left(r^{2}-4\right)+x r^{2} .
\end{aligned}
$$

This gives

$$
\dot{r}=\frac{x \dot{x}+y \dot{y}}{r}=r\left(1-r^{2}\right)\left(r^{2}-4\right)
$$

and

$$
\dot{\theta}=\frac{\dot{y} x-y \dot{x}}{r^{2}}=r^{2} .
$$

Since $\dot{\theta}>0$ for $r>0$, the motion goes counterclockwise around the origin (which obviously is an equilibrium). The one-dimensional phase portrait for the r-equation is (for $r \geq 0$) " $0 \leftarrow 1 \rightarrow 2 \leftarrow$ ", which shows that the circle $x^{2}+y^{2}=1$ is an unstable limit cycle and the circle $x^{2}+y^{2}=4$ is a stable limit cycle.
5. The system matrix

$$
A=\left(\begin{array}{ccc}
5 & -1 & 1 \\
8 & 0 & 1 \\
0 & -1 & 2
\end{array}\right)
$$

has characteristic polynomial

$$
\operatorname{det}(A-\lambda I)=\lambda^{3}-7 \lambda^{2}+19 \lambda-13=(\lambda-1)\left(\lambda^{2}-6 \lambda+13\right),
$$

so the eigenvalues are $3 \pm 2 i$ and 1 , with eigenvectors

$$
\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \pm i\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),
$$

respectively. So the change of variables

$$
\mathbf{x}=M \mathbf{y}, \quad M=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 1 \\
0 & -1 & 1
\end{array}\right)
$$

brings the system $\dot{\mathbf{x}}=A \mathbf{x}$ to Jordan normal form

$$
\dot{\mathbf{y}}=M^{-1} A M \mathbf{y}=J \mathbf{y}, \quad J=\left(\begin{array}{ccc}
3 & -2 & 0 \\
2 & 3 & 0 \\
0 & 0 & 1
\end{array}\right),
$$

with the general solution

$$
\mathbf{y}(t)=\left(\begin{array}{c}
e^{3 t}(A \cos 2 t+B \sin 2 t) \\
e^{3 t}(A \sin 2 t-B \sin 2 t) \\
C e^{t}
\end{array}\right),
$$

so the answer is

$$
\begin{aligned}
\mathbf{x}(t) & =M \mathbf{y}(t)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 1 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{c}
e^{3 t}(A \cos 2 t+B \sin 2 t) \\
e^{3 t}(A \sin 2 t-B \cos 2 t) \\
C e^{t}
\end{array}\right) \\
& =A e^{3 t}\left(\begin{array}{c}
\cos 2 t \\
2 \cos 2 t+\sin 2 t \\
-\sin 2 t
\end{array}\right)+B e^{3 t}\left(\begin{array}{c}
\sin 2 t \\
2 \sin 2 t-\cos 2 t \\
\cos 2 t
\end{array}\right)+C e^{t}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),
\end{aligned}
$$

where A, B and C are arbitrary real constants.
6. $V(x, y)=2 x^{2}+y^{2}$ is a weak Liapunov function, since it is positive definite and

$$
\begin{aligned}
\dot{V} & =\frac{\partial V}{\partial x} \dot{x}+\frac{\partial V}{\partial y} \dot{y}=4 x\left(x y^{4}-2 x^{3}-y\right)+2 y\left(2 x+2 x^{2} y^{3}-y^{7}\right) \\
& =8 x^{2} y^{4}-8 x^{4}-2 y^{8}=-2\left(2 x^{2}-y^{4}\right)^{2} \leq 0 .
\end{aligned}
$$

The set where $\dot{V}=0$ consists of the two curves $x= \pm y^{2} / \sqrt{2}$, which can be parametrized as $(x, y)=\left(\pm s^{2} / \sqrt{2}, s\right)$. The tangent vector at a typical point on one of these curves is $\left(\frac{d x}{d s}, \frac{d y}{d s}\right)=(\pm \sqrt{2} s, 1)$, and the vector field $(\dot{x}, \dot{y})=$ $\left(x\left(y^{4}-2 x^{2}\right)-y, 2 x+\left(2 x^{2}-y^{4}\right) y^{3}\right)$ reduces to $(\dot{x}, \dot{y})=(-y, 2 x)=\left(-s, \pm \sqrt{2} s^{2}\right)$, which is orthogonal to the tangent vector (and nonzero for $s \neq 0$). This shows that the trajectories, except for the equilibrium point $(0,0)$ itself, do not stay on the curves where $\dot{V}=0$, and asymptotic stability therefore follows from LaSalle's theorem. For global asymptotic stability, it is enough to remark that (in addition to the above) $V(x, y) \rightarrow \infty$ as $|(x, y)| \rightarrow \infty$.

