TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2020-03-17 kl. 14.00-19.00

No aids allowed. You may write your answers in English or Swedish (or both). Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade $n \in\{3,4,5\}$ you need at least n passed problems and at least $3 n-1$ points.
Solutions will be posted on the course webpage afterwards. Good luck!

1. Sketch the phase portrait for the $\operatorname{ODE} \dot{x}=x^{3}$, and compute the flow $\phi_{t}(x)$.
2. Show that the origin is a globally stable equilibrium point of the system

$$
\dot{x}=-x+6 y^{3}-3 y^{4}, \quad \dot{y}=-x-y+\frac{1}{2} x y .
$$

(Hint: Look for a Liapunov function of the form $x^{2}+c y^{k}$.)
3. Compute the general solution of the linear system

$$
\dot{x}=x, \quad \dot{y}=y-2 x,
$$

and in particular compute the solution satisfying $(x(0), y(0))=(1,0)$. Also sketch the phase portrait.
4. State and prove the trace-determinant criterion for stability of a simple 2×2 linear system $\dot{\mathbf{x}}=A \mathbf{x}, \mathbf{x} \in \mathbf{R}^{2}, \operatorname{det}(A) \neq 0$.
5. Find a constant of motion for the system

$$
\dot{x}=y-x^{2}, \quad \dot{y}=2 x(y-1)
$$

and sketch the phase portrait.
6. Use variation of constants to compute the general solution of $\ddot{x}+x=\tan t$.

Solutions for TATA71 2020-03-17

1. Phase portrait for $\dot{x}=x^{3}: \longleftarrow 0 \longrightarrow$

To solve the ODE, consider the equilibrium solution $x(t)=0$ separately. All other solutions are given by $\dot{x} x^{-3}=1$, which integrates to $-\frac{1}{2} x^{-2}=t+C$. With $x(0)=x_{0} \neq 0$, we thus get $-\frac{1}{2} x(t)^{-2}=t-\frac{1}{2} x_{0}^{-2}$, so that $x(t)^{2}=x_{0}^{2} /(1-$ $2 t x_{0}^{2}$). Choosing the correct sign when taking square roots (so that we get $x(0)=x_{0}$ and not $\left.x(0)=-x_{0}\right)$ gives $x(t)=x_{0} /\left(1-2 t x_{0}^{2}\right)^{1 / 2}$, and this formula gives the correct solution also in the exceptional case $x_{0}=0$.
Answer. The flow is $\phi_{t}(x)=\frac{x}{\sqrt{1-2 t x^{2}}}$ (for all $t \in \mathbf{R}$ if $x=0$, for $t<\left(2 x^{2}\right)^{-1}$ if $x \neq 0$).
2. With $V(x, y)=x^{2}+c y^{k}$ we have

$$
\begin{aligned}
\dot{V} & =V_{x}^{\prime} \dot{x}+V_{y}^{\prime} \dot{y} \\
& =2 x\left(-x+6 y^{3}-3 y^{4}\right)+c k y^{k-1}\left(-x-y+\frac{1}{2} x y\right) \\
& =-2 x^{2}+12 x y^{3}-6 x y^{4}-c k x y^{k-1}-c k y^{k}+\frac{1}{2} c k x y^{k} \\
& =\left(-2 x^{2}-c k y^{k}\right)+x\left(12 y^{3}-c k y^{k-1}\right)-\frac{1}{2} x y\left(12 y^{3}-c k y^{k-1}\right)
\end{aligned}
$$

Taking $k=4$ and $c=3$, we get a positive definite function $V=x^{2}+3 y^{4}$ such that $\dot{V}=-2 x^{2}-12 y^{4}$ is negative definite. So V is a strong Liapunov function for the system. Moreover, $V(x, y) \rightarrow \infty$ as $\sqrt{x^{2}+y^{2}} \rightarrow \infty$, so the origin is a globally stable equilibrium.
3. We can integrate the first equation $\dot{x}=x$ immediately: $x(t)=A e^{t}$. Then the second equation $\dot{y}=y-2 x$ becomes $\dot{y}-y=-2 A e^{t}$, or $\frac{d}{d t}\left(y e^{-t}\right)=$ $-2 A$, so that $y(t)=(-2 A t+B) e^{t}$. The initial conditions $(x(0), y(0))=(1,0)$ correspond to $A=1$ and $B=0$.

Phase portrait: "streamplot $\{x, y-x\}, x=-3 . .3, y=-3 . .3$ " in Wolfram Alpha. The origin is an unstable improper node.
Answer. General solution $(x(t), y(t))=\left(A e^{t},(B-2 A t) e^{t}\right)$. Particular solution $(x(t), y(t))=\left(e^{t},-2 t e^{t}\right)$.
4. Let $\beta=\operatorname{tr}(A)$ and $\gamma=\operatorname{det}(A)$. Since $\gamma \neq 0$ by assumption, $(x, y)=(0,0)$ is the only equilibrium point, and we know that it is asymptotically stable iff the eigenvalues of A have negative real part, and neutrally stable iff they lie on the imaginary axis. The eigenvalues are the roots of the characteristic polynomial $\operatorname{det}(A-\lambda I)=\lambda^{2}-\beta \lambda+\gamma$:

$$
\lambda_{1,2}=\frac{\beta}{2} \pm \sqrt{\left(\frac{\beta}{2}\right)^{2}-\gamma}
$$

If $\gamma<0$, then the square root is real, and greater than $|\beta / 2|$, so in this case there is one negative and one positive eigenvalue, and the origin is unstable (a saddle point). If $\gamma>0$, either the square root is imaginary, or it is real but smaller than $|\beta / 2|$, so in this case the real parts of λ_{1} and λ_{2} both have the same sign as $\beta / 2$; thus, the origin is asymptotically stable if $\beta<0$, neutrally stable if $\beta=0$ and unstable if $\beta>0$.
In conclusion, the criterion is that the origin is asymptotically stable if $\operatorname{tr}(A)<0$ and $\operatorname{det}(A)>0$, neutrally stable if $\operatorname{tr}(A)=0$ and $\operatorname{det}(A)>0$, and unstable otherwise.
5. The system has the Hamiltonian form $\dot{x}=\partial H / \partial y, \dot{y}=-\partial H / \partial x$ where $H(x, y)=x^{2}+\frac{1}{2} y^{2}-x^{2} y$, and H is therefore automatically a constant of motion.
Phase portrait: "streamplot $\left\{y-x^{\wedge} 2,2 x(y-1)\right\}, x=-3 . .3, y=-3 . .3$ " in Wolfram Alpha.
The origin is a neutrally stable equilibrium, since it is surrounded by closed orbits that follow the level sets of H (near the origin these level sets resemble ellipses $x^{2}+\frac{1}{2} y^{2}=C$). The equilibria $(\pm 1,1)$ are saddle points, by the trace-determinant criterion.
6. Write the equation $\ddot{x}+x=\tan t$ as a system, by letting $x_{1}=x$ and $x_{2}=\dot{x}$:

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{\tan t} .
$$

From $x_{\text {hom }}(t)=A \cos t+B \sin t$ we compute the fundamental matrix

$$
\Phi=\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)
$$

and we make the substitution $\mathbf{x}(\mathbf{t})=\Phi(t) \mathbf{y}(\mathbf{t})$ as usual. Then the system becomes

$$
\dot{\mathbf{y}}=\Phi^{-1}\binom{0}{\tan t}=\binom{-\sin ^{2} t / \cos t}{\sin t}
$$

Integration gives

$$
\mathbf{y}=\binom{y_{1}}{y_{2}}=\binom{\sin t+\frac{1}{2} \ln \left|\frac{1-\sin t}{1+\sin t}\right|+A}{-\cos t+B}
$$

from which we can compute $x(t)=x_{1}(t)$ from the first row in the matrix product $\mathbf{x}(\mathbf{t})=\Phi(t) \mathbf{y}(\mathbf{t})$:

$$
x(t)=\cos t \cdot y_{1}(t)+\sin t \cdot y_{2}(t) .
$$

Answer. $x(t)=A \cos t+B \sin t+\frac{1}{2} \cos t \cdot \ln \left|\frac{1-\sin t}{1+\sin t}\right|$.

