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Rules, short version.

• Aids are permitted, but no collaboration with other persons is allowed.

Rules, long version.

• This is an individual examination, so you are required to answer the ques-
tions on your own.

• You may ask the teacher for clarifications (email hans.lundmark@liu.se).
Except for that, it is not allowed to communicate in any way with other
persons regarding the solutions of the problems during the exam. So you
may not get help from others, and it is also not allowed to give help to
other students who are taking this exam, for example by letting them look
at your solutions.

• You can use any aids (books, computers, etc.), but you are expected to
present your solutions with as much detail as if calculating by hand (like
on a usual exam without aids). Consulting old information from online
forums is allowed, but you may not make use of any questions or answers
posted during the exam. Cite your sources whenever appropriate, and
avoid quoting text verbatim; it is much preferred if you use your own
formulations.

• The solutions should be handwritten (unless you have a special permit
from LiU’s disability coordinator to write on a computer). Writing by hand
on a tablet is fine, but please use dark text on a white background.

• You may write your answers in English or in Swedish (or some mixture
thereof).

You will find the problems on the next page.

Each problem will be marked pass (3 or 2 points) or fail (1 or 0 points). For grade
n ∈ {3,4,5} you need at least n passed problems and at least 3n −1 points.

Solutions will be posted on the course webpage afterwards. Good luck!



1. Solve the initial value problem

ẋ = x −2y,

ẏ = x − y,

x(0) = 0,

y(0) = 1,

and draw the solution curve (x(t ), y(t )) in the x y-plane.

(Try to draw as accurately as possible. In particular, the nullclines of the
system should be taken into account.)

2. Use linearization to classify the equilibrium points of the system

ẋ = y −x2 −x, ẏ = y −x −1,

and sketch the phase portrait.

3. Determine k ∈ R such that x(t ) = ekt is a solution of the ODE

(t 2 +1) ẍ(t )−2(t 2 + t +1) ẋ(t )+4t x(t ) = 0,

and then use reduction of order to find the general solution.

4. (a) Determine a constant of motion F (x, y) for the system

ẋ = x y, ẏ = 1−x2.

(b) Determine all linear systems in R2 for which F (x, y) = x2 + y2 is a
constant of motion.

(c) Give an example of a nonlinear system in R2 for which F (x, y) =
x2 + y2 is a constant of motion.

5. Show that the origin is a stable equilibrium for the system

ẋ =−y +x y, ẏ = x −x2 − y3.

(Hint: V (x, y) = x2 + y2.) Is it asymptotically stable? If so, is it globally
asymptotically stable?

6. Construct polynomials X (x, y) and Y (x, y) such that the circles x2 + y2 = 1
and x2+y2 = 9 are stable limit cycles for the system ẋ = X (x, y), ẏ = Y (x, y).



Solutions for TATA71 2021-01-14
1. The system matrix

(
1 −2
1 −1

)
has the eigenvalues λ = ±i , with eigenvectors(

1±i
1

)= (
1
1

)± i
(

1
0

)
, so the change of variables(

x
y

)
= u

(
1
0

)
+ v

(
1
1

)
brings the system to a canonical form which we know how to solve:(

u̇
v̇

)
=

(
0 −1
1 0

)(
u
v

)
⇐⇒

(
u(t )
v(t )

)
=

(
cos t −sin t
sin t cos t

)(
A
B

)
.

Thus, the general real-valued solution in the original variables is(
x(t )
y(t )

)
= u(t )

(
1
0

)
+ v(t )

(
1
1

)
= (A cos t −B sin t )

(
1
0

)
+ (A sin t +B cos t )

(
1
1

)
= A

(
cos t + sin t

sin t

)
+B

(
cos t − sin t

cos t

)
,

and the initial conditions (x(0), y(0)) = (0,1) correspond to (A,B) = (−1,1):(
x(t )
y(t )

)
=

( −2sin t
cos t − sin t

)
.

The origin is a centre, surrounded by closed trajectories with period 2π:
cirles u2 + v2 =C in the new coordinates, hence ellipses (x − y)2 + y2 =C
in the original coordinates. The particular solution curve here, the one
passing through the point (0,1), is the ellipse (x − y)2 + y2 = 2, traversed
in the counterclockwise direction. The nullclines ẋ = x −2y = 0 and ẏ =
x − y = 0 are drawn in red and orange in the left picture below; note that
the ellipse has a horizontal/vertical tangent precisely where it crosses
the nullclines. (For a really precise description of the ellipse, one can
diagonalize the quadratic form (x−y)2+y2 = x2−2x y+2y2 to find that the
axes of the ellipse lie along the lines 2x+(

p
5−1)y = 0 and 2x−(

p
5+1)y = 0,

as drawn in the right picture, but that’s perhaps overkill here.)



2. The nullclines ẋ = 0 ⇐⇒ y = x2 + x = (x + 1
2 )2 − 1

4 (drawn in red in the
figure below) and ẏ = 0 ⇐⇒ y = x + 1 (drawn in orange) intersect at
the equilibrium points (x, y) = (−1,0) and (1,2). The Jacobian is J(x, y) =(−2x−1 1−1 1

)
, so

J (−1,0) =
(

1 1
−1 1

)
, β= tr J = 2 > 0, γ= det J = 2 > (β/2)2

and

J (1,2) =
(−3 1
−1 1

)
, γ= det J =−2 < 0.

By the trace–determinant criterion, (−1,0) is an unstable focus and (1,2)

is a saddle (where we can compute the principal directions
(

2±p3
1

)
if we

want to be really precise when drawing the phase portrait, but in this case
we can draw a pretty good picture even without this information).

(In case you are interested in what
the solution curves look like further
away from the origin, note that far out
to the left or to the right in the pic-
ture, i.e., if we consider large enough
|x| for each fixed y , the vector field is
pointing nearly straight left, since the
term −x2 in ẋ is overshadowing every-
thing else. And far away on the y-axis,
the slope of the curves is close to 45◦,
since if x = 0, then ẏ/ẋ = (y − 1)/y ,
which tends to 1 as y →±∞.)



3. Inserting x(t ) = ekt into the ODE gives

0 = (t 2 +1) ẍ(t )−2(t 2 + t +1) ẋ(t )+4t x(t )

= ekt
(
k2(t 2 +1)−2k(t 2 + t +1)+4t

)
= ekt

(
(k2 −2k)(t 2 +1)+ (4−2k)t

)
,

which is satisfied identically iff k = 2. So x(t ) = e2t is a solution. To reduce
the order, let x(t ) = e2t Y (t ); then ẋ = e2t (2Y +Ẏ ) and ẍ = e2t (4Y +4Ẏ +Ÿ ),
so the ODE becomes

0 = (t 2 +1) ẍ(t )−2(t 2 + t +1) ẋ(t )+4t x(t )

= e2t
(
(t 2 +1)(4Y +4Ẏ + Ÿ )−2(t 2 + t +1)(2Y + Ẏ )+4t Y

)
= e2t

(
0Y +2(t 2 − t +1)Ẏ + (t 2 +1)Ÿ

)
= e2t

t 2 +1

(
ẏ +

(
2− 2t

t 2 +1

)
y

)
,

where y = Ẏ . Then exp
(
2t −ln(t 2+1)

)= e2t /(t 2+1) is an integrating factor,
which turns the ODE into d

d t

(
y(t )e2t /(t 2 +1)

)= 0, with the solution y(t ) =
A(t 2 +1)e−2t . Integration gives Y (t) = ∫

y(t)d t =−1
2 A(t 2 + t + 3

2 )e−2t +B .
Letting C = −A/2 will make the final answer x(t) = e2t Y (t) look a little
nicer.

Answer. x(t ) = Be2t +C (t 2 + t + 3
2 ), where B and C are arbitrary constants.

4. (a) Assume (for the moment) that x y 6= 0. Then d y/d x = ẏ/ẋ = (1−
x2)/x y , which gives∫

y d y =
∫

1−x2

x
d x ⇐⇒ y2

2
= ln |x|− x2

2
+C ,

so that C = (x2 + y2)/2− ln |x| is a constant of motion (for x 6= 0). If
we want a constant of motion that is defined on all of R2 we can take
e−C and remove the absolute value signs to get F (x, y) = x e−(x2+y2)/2.
(Anyone who worries about the restriction x y 6= 0 can verify by direct
computation that Ḟ = 0 for all (x, y) ∈ R2.)

Answer. F (x, y) = x e−(x2+y2)/2 (for example).

(b) A linear system has the form ẋ = ax +by , ẏ = cx +d y , and then

V̇ = 2xẋ+2y ẏ = 2x(ax+by)+2y(cx+d y) = 2ax2+2(b+c)x y+2d y2

is identically zero iff a = d = 0 and c =−b.

Answer. ẋ = by , ẏ =−bx, where b ∈ R is arbitrary.



(c) We can simply multiply some linear vector field from part (b), such
as (ẋ, ẏ) = (y,−x), by a nonzero and nonconstant function, such as
f (x, y) = ex , to get a nonlinear vector field with exactly the same
phase portrait; it’s only the speed along the trajectories that changes.
(Actually it also works with a function f which has zeros; the phase
portrait may gain some additional equilibrium points, but that doesn’t
change the fact that V̇ = 0.)

Answer. ẋ = yex , ẏ =−xex (for example).

5. Obviously V (x, y) = x2 + y2 is positive definite, and V̇ = 2xẋ + 2y ẏ =
2x(−y + x y)+2y(x − x2 − y3) = −2y4 ≤ 0 for all (x, y), so V is a weak Lia-
punov function for the system, and thus the origin is a stable equilibrium
according to Liapunov’s theorem.

It cannot be globally asymptotically stable, for the simple reason that
(x, y) = (1,0) is another equilibrium point.

However, the origin is asymptotically stable, by LaSalle’s theorem applied
with the restriction of V to the open half-plane Ω = {(x, y) ∈ R2 : x < 1}.
Indeed, V is of course still a weak Liapunov function when restricted toΩ,
and the set

C = {
(x, y) ∈Ω : V̇ = 0

}= {
(x,0) : x < 1

}
contains no complete trajectories except the origin. (Proof: The vector
field is transversal to the horizontal half-line C except at the origin, since
if y = 0 and x < 1 and x 6= 0, then ẏ = x − x3 6= 0.) So the assumptions for
LaSalle’s theorem are satisfied.

(Remark: In fact, all trajectories starting inΩ converge to the origin, and
all other trajectories converge to (1,0). See the phase portrait below.)



6. Let us look for a system of the form

ẋ =−y +x f (x2 + y2),

ẏ = x + y f (x2 + y2),

where f is a polynomial, since in polar coordinates this becomes

ṙ = r f (r 2), θ̇ = 1,

which has the desired property if the one-dimensional phase portrait for r
has stable equilibria at r = 1 and r = 3, perhaps like this:

r0 1 2 3

For example, ṙ = r (1−r 2)(4−r 2)(9−r 2) has such a phase portrait (for r ≥ 0,
which is all that is relevant here), so f (t ) = (1− t )(4− t )(9− t ) will do.

Answer. For example,

ẋ =−y +x(1−x2 − y2)(4−x2 − y2)(9−x2 − y2),

ẏ = x + y(1−x2 − y2)(4−x2 − y2)(9−x2 − y2).


