Linköpings universitet Matematiska institutionen Hans Lundmark

TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2021-08-27 kl. 8.00-13.00

No aids allowed. You may write your answers in English or Swedish (or both). Each problem is marked *pass* (3 or 2 points) or *fail* (1 or 0 points). For grade $n \in \{3, 4, 5\}$ you need at least n passed problems and at least 3n - 1 points. Solutions will be posted on the course webpage afterwards. Good luck!

1. Derive an explicit formula for the solution x(t) of the logistic equation

$$\dot{x} = r x \left(1 - \frac{x}{K} \right), \qquad r > 0, \quad K > 0,$$

in terms of the initial value $x(0) = x_0 \in \mathbf{R}$. Also state the maximal interval of existence for the solution (as a function of x_0).

2. Sketch the phase portrait for the linear system

$$\dot{x} = x + 3y, \qquad \dot{y} = -2y.$$

Try to make your drawing as accurate as possible. In particular, take the nullclines and the principal directions into account.

3. Suppose (x(t), y(t)) satisfies

$$\dot{x} = 2x + 3y, \qquad \dot{y} = -3x + 2y$$

with the initial values (x(0), y(0)) = (0, 1). Compute (x(5), y(5)).

4. Use linearization to classify the equilibria of the system

$$\dot{x} = y - x^2, \qquad \dot{y} = 2 + x - y,$$

and sketch the phase portrait.

5. Show that the origin is a stable equilibrium of the system

$$\dot{x} = -2y, \qquad \dot{y} = 2x + x^2 - y^3.$$

(Hint: $V(x, y) = x^2 + y^2 + \frac{1}{3}x^3$.) Is it asymptotically stable? If so, is it globally asymptotically stable?

6. Compute the general solution x(t) of the ODE

$$\ddot{x} + \dot{x} - 2x = \frac{3}{e^t + e^{-t}}.$$

Solutions for TATA71 2021-08-27

1. If $x_0 = 0$, then x(t) is identically zero. Otherwise, let y(t) = 1/x(t), in terms of which the ODE becomes $-\dot{y}/y^2 = (r/y)(1 - 1/(Ky))$, or in other words $\dot{y} + ry = r/K$, with the general solution $y(t) = Ae^{-rt} + 1/K$, where the initial condition $y(0) = 1/x_0$ gives $A = 1/x_0 - 1/K$. So for $x_0 \neq 0$ we have

$$x(t) = \frac{1}{y(t)} = \frac{1}{\left(\frac{1}{x_0} - \frac{1}{K}\right)e^{-rt} + \frac{1}{K}} = \frac{Kx_0}{x_0 + (K - x_0)e^{-rt}},$$

and this final expression also gives the correct solution when $x_0 = 0$, so it's valid for all $x_0 \in \mathbf{R}$. The solution ceases to exist if the denominator becomes zero, i.e., if $t = \frac{1}{r} \ln(1 - \frac{K}{x_0})$.

Answer. Formula for x(t) as above. The maximal interval of existence is **R** if $0 \le x_0 \le K$, it's $\left(-\infty, \frac{1}{r}\ln(1-\frac{K}{x_0})\right)$ if $x_0 < 0$, and it's $\left(\frac{1}{r}\ln(1-\frac{K}{x_0}), \infty\right)$ if $x_0 > K$.

2. The origin is a saddle point, with principal directions $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ (outgoing, eigenvalue 1) and $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ (incoming, eigenvalue -2). The *x*-nullcline is the line y = -x/3 (red), and the *y*-nullcline is the line y = 0 (yellow, happens to coincide with one of the principal directions).

3. The system is linear, and already in Jordan canonical form,

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

with $\alpha = 2$ and $\beta = -3$, so we know that the general solution is

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = Ae^{\alpha t} \begin{pmatrix} \cos\beta t \\ \sin\beta t \end{pmatrix} + Be^{\alpha t} \begin{pmatrix} -\sin\beta t \\ \cos\beta t \end{pmatrix}$$
$$= Ae^{2t} \begin{pmatrix} \cos3t \\ -\sin3t \end{pmatrix} + Be^{2t} \begin{pmatrix} \sin3t \\ \cos3t \end{pmatrix}.$$

From the initial data (x(0), y(0)) = (0, 1) we find A = 0 and B = 1, so that

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = e^{2t} \begin{pmatrix} \sin 3t \\ \cos 3t \end{pmatrix}.$$

Answer. $(x(5), y(5)) = (e^{10} \sin 15, e^{10} \cos 15).$

4. There are two equilibria, (x, y) = (-1, 1) and (x, y) = (2, 4). Jacobian matrix:

$$J(x, y) = \begin{pmatrix} -2x & 1 \\ 1 & -1 \end{pmatrix} \implies J(-1, 1) = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}, \quad J(2, 4) = \begin{pmatrix} -4 & 1 \\ 1 & -1 \end{pmatrix}.$$

The trace-determinant criterion shows that (-1, 1) is a **saddle point**, since $\gamma = \det J(-1, 1) = -3$ is negative, while (2, 4) is a **stable node**, since $\beta = \operatorname{tr} J(2, 4) = -5$ is negative, $\gamma = \det J(2, 4) = 3$ is positive, and $\gamma < (\beta/2)^2$.

5. We have V(0,0) = 0 and $V(x, y) = x^2(1 + \frac{1}{3}x) + y^2 > 0$ if $(x, y) \neq (0,0)$ and x > -3, and moreover

$$\dot{V} = (2x + x^2)\dot{x} + 2y\dot{y} = -2y(2x + x^2) + 2y(2x + x^2 - y^3) = -2y^4 \le 0$$

for all (x, y), so that *V* is a weak Liapunov function in the region $\Omega_1 = \{(x, y) : x > -3\}$. Hence, by Liapunov's theorem, the origin is a **stable** equilibrium. Next, consider the subregion $\Omega_2 = \{(x, y) : x > -2\}$, where *V* is obviously still a weak Liapunov function. The set of points in Ω where $\dot{V} = 0$, call it *S*, is the portion of the *x*-axis where x > -2. For $(0,0) \neq (x, y) \in S$, we have $\dot{x} = 0$ and $\dot{y} = 2x + x^2 = x(x+2) \neq 0$, so that the vector field is transversal to *S* except at the origin; hence the only complete trajectory contained in *S* is the origin, so the hypotheses for LaSalle's theorem are fulfilled, showing that the origin is in fact **asymptotically stable**. But it is **not globally asymptotically stable**, for the simple reason that there is another equilibrium point (-2,0).

6. The homogeneous equation $\ddot{x} + \dot{x} - 2x = (D-1)(D+2)x = 0$ is equivalent to $x(t) = Ae^t + Be^{-2t}$, so by variation of constants the solution is $x(t) = a(t)e^t + b(t)e^{-2t}$ where

$$e^t \dot{a}(t) + e^{-2t} \dot{b}(t) = 0, \qquad e^t \dot{a}(t) - 2e^{-2t} \dot{b}(t) = \frac{3}{e^t + e^{-t}}.$$

This gives

$$\dot{a}(t) = \frac{e^{-t}}{e^t + e^{-t}}, \qquad \dot{b}(t) = \frac{-e^{2t}}{e^t + e^{-t}},$$

so that (with $u = e^{-t}$)

$$a(t) = \int \frac{e^{-t} dt}{e^t + e^{-t}} = \int \frac{-du}{u^{-1} + u} = -\int \frac{u du}{1 + u^2}$$
$$= -\frac{1}{2}\ln(1 + u^2) + A = -\frac{1}{2}\ln(1 + e^{-2t}) + A$$

and (with $v = e^t$)

$$b(t) = -\int \frac{e^{2t} dt}{e^t + e^{-t}} = -\int \frac{v dv}{v + v^{-1}} = -\int \left(1 - \frac{1}{1 + v^2}\right) dv$$

= -(v - arctan v) + B = arctan(e^t) - e^t + B

Answer. $x(t) = Ae^{t} + Be^{-2t} - \frac{1}{2}e^{t}\ln(1 + e^{-2t}) + e^{-2t}\arctan(e^{t}) - e^{-t}$.