Matematiska institutionen

TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2021-08-27 kl. 8.00-13.00

No aids allowed. You may write your answers in English or Swedish (or both). Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade $n \in\{3,4,5\}$ you need at least n passed problems and at least $3 n-1$ points.
Solutions will be posted on the course webpage afterwards. Good luck!

1. Derive an explicit formula for the solution $x(t)$ of the logistic equation

$$
\dot{x}=r x\left(1-\frac{x}{K}\right), \quad r>0, \quad K>0,
$$

in terms of the initial value $x(0)=x_{0} \in \mathbf{R}$. Also state the maximal interval of existence for the solution (as a function of x_{0}).
2. Sketch the phase portrait for the linear system

$$
\dot{x}=x+3 y, \quad \dot{y}=-2 y .
$$

Try to make your drawing as accurate as possible. In particular, take the nullclines and the principal directions into account.
3. Suppose ($x(t), y(t))$ satisfies

$$
\dot{x}=2 x+3 y, \quad \dot{y}=-3 x+2 y
$$

with the initial values $(x(0), y(0))=(0,1)$. Compute $(x(5), y(5))$.
4. Use linearization to classify the equilibria of the system

$$
\dot{x}=y-x^{2}, \quad \dot{y}=2+x-y,
$$

and sketch the phase portrait.
5. Show that the origin is a stable equilibrium of the system

$$
\dot{x}=-2 y, \quad \dot{y}=2 x+x^{2}-y^{3} .
$$

(Hint: $V(x, y)=x^{2}+y^{2}+\frac{1}{3} x^{3}$.) Is it asymptotically stable? If so, is it globally asymptotically stable?
6. Compute the general solution $x(t)$ of the ODE

$$
\ddot{x}+\dot{x}-2 x=\frac{3}{e^{t}+e^{-t}} .
$$

Solutions for TATA71 2021-08-27

1. If $x_{0}=0$, then $x(t)$ is identically zero. Otherwise, let $y(t)=1 / x(t)$, in terms of which the ODE becomes $-\dot{y} / y^{2}=(r / y)(1-1 /(K y))$, or in other words $\dot{y}+r y=r / K$, with the general solution $y(t)=A e^{-r t}+1 / K$, where the initial condition $y(0)=1 / x_{0}$ gives $A=1 / x_{0}-1 / K$. So for $x_{0} \neq 0$ we have

$$
x(t)=\frac{1}{y(t)}=\frac{1}{\left(\frac{1}{x_{0}}-\frac{1}{K}\right) e^{-r t}+\frac{1}{K}}=\frac{K x_{0}}{x_{0}+\left(K-x_{0}\right) e^{-r t}},
$$

and this final expression also gives the correct solution when $x_{0}=0$, so it's valid for all $x_{0} \in \mathbf{R}$. The solution ceases to exist if the denominator becomes zero, i.e., if $t=\frac{1}{r} \ln \left(1-\frac{K}{x_{0}}\right)$.
Answer. Formula for $x(t)$ as above. The maximal interval of existence is \mathbf{R} if $0 \leq x_{0} \leq K$, it's $\left(-\infty, \frac{1}{r} \ln \left(1-\frac{K}{x_{0}}\right)\right)$ if $x_{0}<0$, and it's $\left(\frac{1}{r} \ln \left(1-\frac{K}{x_{0}}\right), \infty\right)$ if $x_{0}>K$.
2. The origin is a saddle point, with principal directions $\binom{1}{0}$ (outgoing, eigenvalue 1) and $\binom{-1}{1}$ (incoming, eigenvalue -2). The x-nullcline is the line $y=-x / 3$ (red), and the y-nullcline is the line $y=0$ (yellow, happens to coincide with one of the principal directions).

3. The system is linear, and already in Jordan canonical form,

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right)\binom{x}{y}=\left(\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right)\binom{x}{y},
$$

with $\alpha=2$ and $\beta=-3$, so we know that the general solution is

$$
\begin{aligned}
\binom{x(t)}{y(t)} & =A e^{\alpha t}\binom{\cos \beta t}{\sin \beta t}+B e^{\alpha t}\binom{-\sin \beta t}{\cos \beta t} \\
& =A e^{2 t}\binom{\cos 3 t}{-\sin 3 t}+B e^{2 t}\binom{\sin 3 t}{\cos 3 t} .
\end{aligned}
$$

From the initial data $(x(0), y(0))=(0,1)$ we find $A=0$ and $B=1$, so that

$$
\binom{x(t)}{y(t)}=e^{2 t}\binom{\sin 3 t}{\cos 3 t} .
$$

Answer. $(x(5), y(5))=\left(e^{10} \sin 15, e^{10} \cos 15\right)$.
4. There are two equilibria, $(x, y)=(-1,1)$ and $(x, y)=(2,4)$. Jacobian matrix:

$$
J(x, y)=\left(\begin{array}{cc}
-2 x & 1 \\
1 & -1
\end{array}\right) \quad \Longrightarrow \quad J(-1,1)=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right), \quad J(2,4)=\left(\begin{array}{cc}
-4 & 1 \\
1 & -1
\end{array}\right) .
$$

The trace-determinant criterion shows that $(-1,1)$ is a saddle point, since $\gamma=\operatorname{det} J(-1,1)=-3$ is negative, while $(2,4)$ is a stable node, since $\beta=$ $\operatorname{tr} J(2,4)=-5$ is negative, $\gamma=\operatorname{det} J(2,4)=3$ is positive, and $\gamma<(\beta / 2)^{2}$.

5. We have $V(0,0)=0$ and $V(x, y)=x^{2}\left(1+\frac{1}{3} x\right)+y^{2}>0$ if $(x, y) \neq(0,0)$ and $x>-3$, and moreover

$$
\dot{V}=\left(2 x+x^{2}\right) \dot{x}+2 y \dot{y}=-2 y\left(2 x+x^{2}\right)+2 y\left(2 x+x^{2}-y^{3}\right)=-2 y^{4} \leq 0
$$

for all (x, y), so that V is a weak Liapunov function in the region $\Omega_{1}=$ $\{(x, y): x>-3\}$. Hence, by Liapunov's theorem, the origin is a stable equilibrium. Next, consider the subregion $\Omega_{2}=\{(x, y): x>-2\}$, where V is obviously still a weak Liapunov function. The set of points in Ω where $\dot{V}=0$, call it S, is the portion of the x-axis where $x>-2$. For $(0,0) \neq(x, y) \in S$, we have $\dot{x}=0$ and $\dot{y}=2 x+x^{2}=x(x+2) \neq 0$, so that the vector field is transversal to S except at the origin; hence the only complete trajectory contained in S is the origin, so the hypotheses for LaSalle's theorem are fulfilled, showing that the origin is in fact asymptotically stable. But it is not globally asymptotically stable, for the simple reason that there is another equilibrium point $(-2,0)$.
6. The homogeneous equation $\ddot{x}+\dot{x}-2 x=(D-1)(D+2) x=0$ is equivalent to $x(t)=A e^{t}+B e^{-2 t}$, so by variation of constants the solution is $x(t)=$ $a(t) e^{t}+b(t) e^{-2 t}$ where

$$
e^{t} \dot{a}(t)+e^{-2 t} \dot{b}(t)=0, \quad e^{t} \dot{a}(t)-2 e^{-2 t} \dot{b}(t)=\frac{3}{e^{t}+e^{-t}} .
$$

This gives

$$
\dot{a}(t)=\frac{e^{-t}}{e^{t}+e^{-t}}, \quad \dot{b}(t)=\frac{-e^{2 t}}{e^{t}+e^{-t}},
$$

so that (with $u=e^{-t}$)

$$
\begin{aligned}
a(t) & =\int \frac{e^{-t} d t}{e^{t}+e^{-t}}=\int \frac{-d u}{u^{-1}+u}=-\int \frac{u d u}{1+u^{2}} \\
& =-\frac{1}{2} \ln \left(1+u^{2}\right)+A=-\frac{1}{2} \ln \left(1+e^{-2 t}\right)+A
\end{aligned}
$$

and (with $v=e^{t}$)

$$
\begin{aligned}
b(t) & =-\int \frac{e^{2 t} d t}{e^{t}+e^{-t}}=-\int \frac{v d v}{v+v^{-1}}=-\int\left(1-\frac{1}{1+v^{2}}\right) d v \\
& =-(v-\arctan v)+B=\arctan \left(e^{t}\right)-e^{t}+B
\end{aligned}
$$

Answer. $x(t)=A e^{t}+B e^{-2 t}-\frac{1}{2} e^{t} \ln \left(1+e^{-2 t}\right)+e^{-2 t} \arctan \left(e^{t}\right)-e^{-t}$.

