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TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2022-01-13 kl. 8.00–13.00

No aids allowed, except drawing tools (rulers and such). You may write your
answers in English or in Swedish, or some mixture thereof.

Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade
n ∈ {3,4,5} you need at least n passed problems and at least 3n −1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

1. Compute the general solution of the linear system ẋ = 3x, ẏ =−2x−y , and
draw the phase portrait as carefully as you can.

2. Consider the following model for a fish population of size x(t ):

d x

d t
= r x

(
1− x

K

)
︸ ︷︷ ︸
logistic growth

− ax

x +b︸ ︷︷ ︸
fishing

(r,K , a,b > 0).

(a) If x is measured in units of mass (and t is time, of course), what are
the units of the parameters r , K , a and b?

(b) Show that the variables can be rescaled to bring the ODE to the
dimensionless form

d X

dτ
= X (1−X )− αX

X +β .

State clearly how the new variables (X ,τ) are related to (x, t), and
how the new parameters (α,β) are related to (r,K , a,b).

3. Investigate stability of equilibria, and sketch the phase portrait, for the
system ẋ = x(y −1), ẏ = y −x3.

4. (a) Find a constant of motion H(x, y) for the system ẋ = y , ẏ =−x +x3.

(b) Show that the origin is an asymptotically stable equilibrium for the
system ẋ = y −x3, ẏ =−x +x3. (Hint: Part (a) may be useful.)

5. Use variation of constants to determine the general solution of the ODE

ẍ(t )−4ẋ(t )+3x(t ) = e2t

1+e t
.

6. Suppose that β= 1/2 in the ODE for X (τ) from problem 2(b). Draw the
phase portrait for X ≥ 0.

(There will be several qualitatively different cases, depending on the value
of α > 0. State clearly what these cases are, and draw a separate phase
portrait for each case.)



Solutions for TATA71 2022-01-13

1. The system matrix
(

3 0−2 −1

)
has eigenvalues 3 and −1 with eigenvectors

(
2−1

)
and

(
0
1

)
, respectively, so the general solution is(

x(t )
y(t )

)
=C1e3t

(
2
−1

)
+C2e−t

(
0
1

)
,

with arbitrary constants C1,C2 ∈ R. The phase portrait is a saddle, with
straight-line trajectories along the eigenvectors (the principal directions);
the other trajectories are hyperbolas with those lines as asymptotes. Taking
also the nullclines x = 0 (red) and y =−2x (orange) into account, we get
the following picture:

2. (a) The unit of r is 1/time, for K and b it is mass, and for a it is mass/time.

(b) With x = K X and t = τ/r we get

d X

dτ
= 1

K r

d x

d t
= 1

K r

(
r K X

(
1− K X

K

)
− aK X

K X +b

)
= X (1−X )−

a

K r
·X

X + b

K

,

which is of the desired form, with α = a
K r and β = b

K . (As a sanity
check we may note, using the answer from part (a), that X , τ, α and
β are indeed dimensionless.)



3. The equilibria are easily computed to be (0,0) and (1,1). The Jacobian
matrix is

J (x, y) =
(

y −1 x
−3x2 1

)
, J (0,0) =

(−1 0
0 1

)
, J (1,1) =

(
0 1
−3 1

)
,

so (0,0) is obviously a saddle point (with eigenvalues ±1 and with the
x and y directions as principal directions), and hence unstable, while
(1,1) is an unstable focus, since β = tr J = 1 > 0, γ = det J = 3 > 0 and
γ− (β/2)2 = 11/4 > 0. Taking the nullclines and the direction of the vector
field into account, we can now sketch the phase portrait:

4. (a) One may recognize that the system is Hamiltonian, ẋ = ∂H/∂y , ẏ =
−∂H/∂x, with H (x, y) = 1

2 (x2+ y2)− 1
4 x4, and then H is automatically

a constant of motion. It’s also possible to find H via d y/d x = ẏ/ẋ =
(−x +x3)/y , etc.

(b) The function H(x, y) = 1
2 x2

(
1− 1

2 x2
)+ 1

2 y2 from part (a) is a weak
Liapunov function for the system in the stripΩ= {(x, y) : −1 < x < 1},
since H(0,0) = 0, H(x, y) > 0 for (x, y) ∈Ω\ {(0,0)} and

Ḣ = ∂H

∂x
ẋ + ∂H

∂y
ẏ = (x −x3)(y −x3)+ y(−x +x3) =−x4(1−x2) ≤ 0

for (x, y) ∈Ω. Moreover, the set of points inΩwhere Ḣ = 0, i.e., the
line x = 0, contains no complete trajectories except for the equilib-
rium at the origin, since (ẋ, ẏ) = (y,0) when x = 0 so that the tra-
jectories cross the line x = 0 transversally. Thus the hypotheses for
LaSalle’s theorem are satisfied, and this implies that the origin is
asymptotically stable, as was to be shown.



5. Let x1 = x and x2 = ẋ to obtain the equivalent first-order system(
ẋ1

ẋ2

)
=

(
0 1
−3 4

)(
x1

x2

)
+

(
0

e2t /(1+e t )

)
.

We need a fundamental matrix for the homogeneous system, and the
quickest way is perhaps to note that the general solution of ẍ(t )−4ẋ(t )+
3x(t ) = 0 is x(t ) = Ae t +Be3t , so that

Φ(t ) =
(

e t e3t

d
d t e t d

d t e3t

)
=

(
e t e3t

e t 3e3t

)
works. Now we can let x(t ) =Φ(t )y(t ) and compute(

ẏ1

ẏ2

)
=Φ(t )−1

(
0

e2t

1+e t

)
= 1

2

(
3e−t −e−t

−e−3t e−3t

)(
0

e2t

1+e t

)
= 1

2(1+e t )

(−e t

e−t

)
,

which can be integrated using (for example) the substitution u = e t > 0 :

y1(t ) =−1

2

∫
e t d t

1+e t
=−1

2

∫
du

1+u
=−1

2
ln |1+u|+ A =−1

2
ln(1+e t )+ A

and

y2(t ) = 1

2

∫
e−t d t

1+e t
= 1

2

∫
du

u2(1+u)
= 1

2

∫ (
1

u2
− 1

u
+ 1

1+u

)
du

= 1

2

(
− 1

u
− ln |u|+ ln |1+u|

)
+B = 1

2

(−e−t − t + ln(1+e t )
)+B.

So the general solution x(t ) = x1(t ) = y1(t )e t + y2(t )e3t is

x(t ) = Ae t +Be3t − 1
2

(
e2t + t e3t + (

e t −e3t ) ln(1+e t )
)
.

6. By completing the square, write the ODE as

d X

dτ
= X (1−X )− aX

X + 1
2

= X
(
(1−X )(X + 1

2 )−α)
X + 1

2

= X
( =p(X )︷ ︸︸ ︷

9
16 − (X − 1

4 )2−α)
X + 1

2

.

There’s always an equilibrium at X = 0, and the rest of the phase portrait is
determined by the sign of the factor p(X )−α for X > 0. The graph of p(X )
is a parabola, increasing from p(0) = 1/2 to the highest value p(1/2) = 9/16
and then decreasing down to p(1) = 0:



X

p(X ) = (1−X )(X + 1
2 ) = 9

16 − (X − 1
4 )2

−1
2

1
4

1

1/2
9/16

So ifα> 9/16, then p(X )−α is negative for all X > 0, and the phase portrait
takes the following simple form (the fish population goes extinct due to
overfishing; note that large values of α= a

K r correspond to large values of
the maximal fishing rate a):

X
0 1

•

If α= 9/16, then p(X )−α is negative for all X > 0 except that it’s zero for
X = 1/4:

X
0 1

4
1

• •

If 1/2 <α< 9/16, then p(X )−α is zero for two positive values X ∗
1 and X ∗

2
(symmetrically located around X = 1/4), positive in between, and negative
otherwise:

X
0 X ∗

1
1
4

X ∗
2

1

• • •

And if 0 <α≤ 1/2, then p(X )−α is zero for one positive value X ∗ ∈ [1
2 ,1

)
,

positive for 0 < X < X ∗, and negative for X ∗ < X :

X
0 1

4
1
2

X ∗ 1

• •

(If you have nothing better to do, and would like a little challenge, you could
try to classify the phase portrait for all α > 0 and β > 0 by studying the sign of
p(X )−α= (1−X )(X +β)−α for X > 0. As long as 0 <β< 1, you will get similar
results as for β= 1/2 above, with β<α< 1

4 (β+1)2 instead of 1
2 <α< 9

16 , and so
on. But if β≥ 1, then the case with X ∗

1 and X ∗
2 cannot occur, and the cases that

need to be distinguished are 0 <α<β and α≥β.)


