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TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2022-03-17 kl. 14.00–19.00

No aids allowed, except drawing tools (rulers and such). You may write your
answers in English or in Swedish, or some mixture thereof.

Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade
n ∈ {3,4,5} you need at least n passed problems and at least 3n −1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

1. Draw the phase portrait for the equation ẋ = x2 −5x +6, and compute the
solution satisfying the initial condition x(0) = 1. What is the maximal time
interval where that solution is defined?

2. Compute the general solution of the linear system

ẋ = x −4y, ẏ = 2x −3y,

and draw the phase portrait.

3. For the system
ẋ = y −x3, ẏ = 2(x − y2),

investigate stability of equilibrium points and draw the phase portrait.

4. Find the general solution of the ODE t 2ẍ −2t ẋ +2x = 0, for example by
looking for solutions of the form x(t ) = t n . Then use variation of constants
to solve t 2ẍ −2t ẋ +2x = t 3e t .

5. Use LaSalle’s theorem with V (x, y) = x2 + y2 to show that the origin is an
asymptotically stable equilibrium for the system

ẋ =−y −x3 +2x4, ẏ = x −x2 y.

Also determine a region of stability.

6. Let f (x, y) = 1− (x2 + y2)(1+x2). Show that the system

ẋ =−y +x f (x, y), ẏ = x + y f (x, y)

has at least one limit cycle.

(Hint: Polar coordinates and the Poincaré–Bendixson theorem.)



Solutions for TATA71 2022-03-17

1. Since ẋ = (x −2)(x −3), the phase portrait looks like “−→ 2 ←− 3 −→”.

The solution x(t ) with x(0) = 1 stays in the interval x < 2, so

t =
∫ t

0
d t =

∫ x(t )

1

d x

(x −2)(x −3)
= ln

∣∣∣∣x(t )−3

x(t )−2

∣∣∣∣− ln

∣∣∣∣1−3

1−2

∣∣∣∣= ln
3−x(t )

2(2−x(t ))
,

where we can solve for

x(t ) = 4e t −3

2e t −1
.

For t ≥ 0 there are no problems, but as we go backwards in time we en-
counter a singularity when 2e t −1 becomes zero at time t = ln 1

2 =− ln2,
and then the solution blows up to −∞ and ceases to exist. So the maximal
interval of existence is ]− ln2,∞[.

Answer. x(t ) = 4e t −3

2e t −1
, for t >− ln2.

2. The system can be written as(
ẋ
ẏ

)
=

(
1 −4
2 −3

)(
x
y

)
= A

(
x
y

)
,

and it’s a stable focus since β = tr A = −2 < 0 and γ = det A = 5 > (β/2)2.
Taking the nullclines ẋ = 0 (red) and ẏ = 0 (orange) into account, we can
draw the phase portrait:

There are many ways of computing the general solution; for example,
elimination of y gives ẍ + 2ẋ + 5x = 0, which can be solved using the



characteristic polynomial to give x(t) = e−t (A cos2t +B sin2t), and then
y = 1

4 (x−ẋ) gives y(t ) = 1
2 e−t (A cos2t+B sin2t )− 1

2 e−t (−A sin2t+B cos2t ).

Answer.
(

x(t )
y(t )

)
= Ae−t

(
cos2t

1
2 cos2t + 1

2 sin2t

)
+Be−t

(
sin2t

1
2 sin2t − 1

2 cos2t

)
.

3. The nullclines y = x3 and x = y2 intersect at the equilibrium points (x, y) =
(0,0) and (1,1). The Jacobian matrix is

J (x, y) =
(−3x2 1

2 −4y

)
, J (0,0) =

(
0 1
2 0

)
, J (1,1) =

(−3 1
2 −4

)
,

so (0,0) is a saddle (eigenvalues ±p2, principal directions (1,±p2)) and
hence unstable, while (1,1) is a stable node (eigenvalues −5 and −2, prin-
cipal directions (−1,2) and (1,1)).

Phase portrait:

4. Plugging x(t ) = t n into t 2ẍ−2t ẋ+2x = 0 yields t 2 ·n(n−1)t n−2−2t ·nt n−1+
2t n = 0, or in other words n(n − 1)− 2n + 2 = 0, so that n = 1 or n = 2.
Thus we find two linearly independent solutions x(t) = t and x(t) = t 2,
which means that the general solution to the homogeneous equation is
x(t ) = At +B t 2.

The inhomogeneous equation t 2ẍ −2t ẋ +2x = t 3e t is satisfied at t = 0 as
long as ẋ(0) and ẍ(0) exist and x(0) = 0. For t ̸= 0, divide the equation by
t 2 and let x1 = x and x2 = ẋ in order to write it as a system,(

ẋ1

ẋ2

)
=

(
0 1

−2/t 2 2/t

)(
x1

x2

)
+

(
0

te t

)
.



From x(t) = At +B t 2 and ẋ(t) = A ·1+B ·2t we obtain the fundamental
matrix

Φ(t ) =
(

t t 2

1 2t

)
,

and now we let x =Φy as usual, which leads to

Φ(t ) ẏ(t ) =
(

0
te t

)
⇐⇒

(
ẏ1(t )
ẏ2(t )

)
= 1

t 2

(
2t −t 2

−1 t

)(
0

te t

)
=

(−te t

e t

)
.

Integration gives y1(t ) =−(t −1)e t + A and y2(t ) = e t +B , so x(t ) = x1(t ) =
t y1(t )+ t 2 y2(t ) = te t + At +B t 2.

(At least that’s what we get for t ̸= 0, possibly with different constants (A,B)
in the intervals t > 0 and t < 0. But if we want the ODE to be satisfied at
t = 0, then we must take x(0) = 0 and use the same (A,B) for t < 0 and
t > 0, so that ẋ(0) and ẍ(0) exist.)

Answer. x(t ) = te t + At +B t 2, for t ∈ R.

5. With V (x, y) = x2 + y2, which is positive definite, we find
1
2V̇ = xẋ + y ẏ = x(−y −x3 +2x4)+ y(x −x2 y) =−x4(1−2x)−x2 y2,

so V̇ ≤ 0 in the open half-planeΩ= {(x, y) : x < 1/2}, and thus V is a weak
Liapunov function there. InsideΩwe have V̇ (x, y) = 0 if and only if (x, y)
lies on the line x = 0, where ẋ = −y ̸= 0 away from the origin; thus, that
line contains no complete trajectories except the equilibrium point at the
origin. By LaSalle’s theorem, the origin is therefore asymptotically stable.
The usual recipe (take a closed disk x2 + y2 ≤ r 2, with 0 < r < 1

2 so that it
lies inΩ, find the minimum of V on the ball’s boundary, etc.) shows that
every open disk x2 + y2 < r 2 with 0 < r < 1

2 is a domain of stability, and
consequently so is the union of all of them, the open disk x2 + y2 < 1

4 .

(Our answer x2 + y2 < 1
4 is far from optimal, as the computer-drawn phase

portrait below shows, but it’s the best that we get from this particular
Liapunov function.)



6. Away from the origin, we have in polar coordinates

ṙ = xẋ + y ẏ

r
= x

(−y +x f (x, y)
)+ y

(
x + y f (x, y)

)
r

= (x2 + y2) f (x, y)

r
= r

(
1− r 2(1+ r 2 cos2θ)

)
and

θ̇ = x ẏ − y ẋ

r 2
= x

(
x + y f (x, y)

)− y
(−y +x f (x, y)

)
r 2

= x2 + y2

r 2
= 1.

So, for example, if r = 1
2 then

ṙ = 1
2

(
1− 1

4 · (1+ 1
4 cos2θ)

)≥ 1
2

(
1− 1

4 · 5
4

)> 0

for all θ, and if r = 2 then

ṙ = 2
(
1−4 · (1+4cos2θ)

)≤ 2
(
1−4 ·1

)< 0

for all θ. This implies that the annulus 1
2 ≤ r ≤ 2 is a trapping region, and

it contains no equilibrium (since θ̇ = 1), so by the Poincaré–Bendixson
theorem it must contain at least one limit cycle.


