Matematiska institutionen

## TATA71 Ordinära differentialekvationer och dynamiska system Tentamen 2022-03-17 kl. 14.00-19.00

No aids allowed, except drawing tools (rulers and such). You may write your answers in English or in Swedish, or some mixture thereof.
Each problem is marked pass ( 3 or 2 points) or fail ( 1 or 0 points). For grade $n \in\{3,4,5\}$ you need at least $n$ passed problems and at least $3 n-1$ points. Solutions will be posted on the course webpage afterwards. Good luck!

1. Draw the phase portrait for the equation $\dot{x}=x^{2}-5 x+6$, and compute the solution satisfying the initial condition $x(0)=1$. What is the maximal time interval where that solution is defined?
2. Compute the general solution of the linear system

$$
\dot{x}=x-4 y, \quad \dot{y}=2 x-3 y,
$$

and draw the phase portrait.
3. For the system

$$
\dot{x}=y-x^{3}, \quad \dot{y}=2\left(x-y^{2}\right),
$$

investigate stability of equilibrium points and draw the phase portrait.
4. Find the general solution of the ODE $t^{2} \ddot{x}-2 t \dot{x}+2 x=0$, for example by looking for solutions of the form $x(t)=t^{n}$. Then use variation of constants to solve $t^{2} \ddot{x}-2 t \dot{x}+2 x=t^{3} e^{t}$.
5. Use LaSalle's theorem with $V(x, y)=x^{2}+y^{2}$ to show that the origin is an asymptotically stable equilibrium for the system

$$
\dot{x}=-y-x^{3}+2 x^{4}, \quad \dot{y}=x-x^{2} y .
$$

Also determine a region of stability.
6. Let $f(x, y)=1-\left(x^{2}+y^{2}\right)\left(1+x^{2}\right)$. Show that the system

$$
\dot{x}=-y+x f(x, y), \quad \dot{y}=x+y f(x, y)
$$

has at least one limit cycle.
(Hint: Polar coordinates and the Poincaré-Bendixson theorem.)

## Solutions for TATA71 2022-03-17

1. Since $\dot{x}=(x-2)(x-3)$, the phase portrait looks like " $\longrightarrow 2 \longleftarrow 3 \longrightarrow$ ".

The solution $x(t)$ with $x(0)=1$ stays in the interval $x<2$, so

$$
t=\int_{0}^{t} d t=\int_{1}^{x(t)} \frac{d x}{(x-2)(x-3)}=\ln \left|\frac{x(t)-3}{x(t)-2}\right|-\ln \left|\frac{1-3}{1-2}\right|=\ln \frac{3-x(t)}{2(2-x(t))},
$$

where we can solve for

$$
x(t)=\frac{4 e^{t}-3}{2 e^{t}-1} .
$$

For $t \geq 0$ there are no problems, but as we go backwards in time we encounter a singularity when $2 e^{t}-1$ becomes zero at time $t=\ln \frac{1}{2}=-\ln 2$, and then the solution blows up to $-\infty$ and ceases to exist. So the maximal interval of existence is $]-\ln 2, \infty[$.
Answer. $x(t)=\frac{4 e^{t}-3}{2 e^{t}-1}$, for $t>-\ln 2$.
2. The system can be written as

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{ll}
1 & -4 \\
2 & -3
\end{array}\right)\binom{x}{y}=A\binom{x}{y},
$$

and it's a stable focus since $\beta=\operatorname{tr} A=-2<0$ and $\gamma=\operatorname{det} A=5>(\beta / 2)^{2}$. Taking the nullclines $\dot{x}=0$ (red) and $\dot{y}=0$ (orange) into account, we can draw the phase portrait:


There are many ways of computing the general solution; for example, elimination of $y$ gives $\ddot{x}+2 \dot{x}+5 x=0$, which can be solved using the
characteristic polynomial to give $x(t)=e^{-t}(A \cos 2 t+B \sin 2 t)$, and then $y=\frac{1}{4}(x-\dot{x})$ gives $y(t)=\frac{1}{2} e^{-t}(A \cos 2 t+B \sin 2 t)-\frac{1}{2} e^{-t}(-A \sin 2 t+B \cos 2 t)$.
Answer. $\binom{x(t)}{y(t)}=A e^{-t}\binom{\cos 2 t}{\frac{1}{2} \cos 2 t+\frac{1}{2} \sin 2 t}+B e^{-t}\binom{\sin 2 t}{\frac{1}{2} \sin 2 t-\frac{1}{2} \cos 2 t}$.
3. The nullclines $y=x^{3}$ and $x=y^{2}$ intersect at the equilibrium points $(x, y)=$ $(0,0)$ and $(1,1)$. The Jacobian matrix is

$$
J(x, y)=\left(\begin{array}{cc}
-3 x^{2} & 1 \\
2 & -4 y
\end{array}\right), \quad J(0,0)=\left(\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right), \quad J(1,1)=\left(\begin{array}{cc}
-3 & 1 \\
2 & -4
\end{array}\right),
$$

so $(0,0)$ is a saddle (eigenvalues $\pm \sqrt{2}$, principal directions $(1, \pm \sqrt{2})$ ) and hence unstable, while $(1,1)$ is a stable node (eigenvalues -5 and -2 , principal directions ( $-1,2$ ) and ( 1,1 )).
Phase portrait:

4. Plugging $x(t)=t^{n}$ into $t^{2} \ddot{x}-2 t \dot{x}+2 x=0$ yields $t^{2} \cdot n(n-1) t^{n-2}-2 t \cdot n t^{n-1}+$ $2 t^{n}=0$, or in other words $n(n-1)-2 n+2=0$, so that $n=1$ or $n=2$. Thus we find two linearly independent solutions $x(t)=t$ and $x(t)=t^{2}$, which means that the general solution to the homogeneous equation is $x(t)=A t+B t^{2}$.
The inhomogeneous equation $t^{2} \ddot{x}-2 t \dot{x}+2 x=t^{3} e^{t}$ is satisfied at $t=0$ as long as $\dot{x}(0)$ and $\ddot{x}(0)$ exist and $x(0)=0$. For $t \neq 0$, divide the equation by $t^{2}$ and let $x_{1}=x$ and $x_{2}=\dot{x}$ in order to write it as a system,

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-2 / t^{2} & 2 / t
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{t e^{t}} .
$$

From $x(t)=A t+B t^{2}$ and $\dot{x}(t)=A \cdot 1+B \cdot 2 t$ we obtain the fundamental matrix

$$
\Phi(t)=\left(\begin{array}{cc}
t & t^{2} \\
1 & 2 t
\end{array}\right),
$$

and now we let $\mathbf{x}=\Phi \mathbf{y}$ as usual, which leads to

$$
\Phi(t) \dot{\mathbf{y}}(t)=\binom{0}{t e^{t}} \quad \Longleftrightarrow\binom{\dot{y}_{1}(t)}{\dot{y}_{2}(t)}=\frac{1}{t^{2}}\left(\begin{array}{cc}
2 t & -t^{2} \\
-1 & t
\end{array}\right)\binom{0}{t e^{t}}=\binom{-t e^{t}}{e^{t}} .
$$

Integration gives $y_{1}(t)=-(t-1) e^{t}+A$ and $y_{2}(t)=e^{t}+B$, so $x(t)=x_{1}(t)=$ $t y_{1}(t)+t^{2} y_{2}(t)=t e^{t}+A t+B t^{2}$.
(At least that's what we get for $t \neq 0$, possibly with different constants $(A, B)$ in the intervals $t>0$ and $t<0$. But if we want the ODE to be satisfied at $t=0$, then we must take $x(0)=0$ and use the same $(A, B)$ for $t<0$ and $t>0$, so that $\dot{x}(0)$ and $\ddot{x}(0)$ exist.)
Answer. $x(t)=t e^{t}+A t+B t^{2}$, for $t \in \mathbf{R}$.
5. With $V(x, y)=x^{2}+y^{2}$, which is positive definite, we find

$$
\frac{1}{2} \dot{V}=x \dot{x}+y \dot{y}=x\left(-y-x^{3}+2 x^{4}\right)+y\left(x-x^{2} y\right)=-x^{4}(1-2 x)-x^{2} y^{2},
$$

so $\dot{V} \leq 0$ in the open half-plane $\Omega=\{(x, y): x<1 / 2\}$, and thus $V$ is a weak Liapunov function there. Inside $\Omega$ we have $\dot{V}(x, y)=0$ if and only if $(x, y)$ lies on the line $x=0$, where $\dot{x}=-y \neq 0$ away from the origin; thus, that line contains no complete trajectories except the equilibrium point at the origin. By LaSalle's theorem, the origin is therefore asymptotically stable. The usual recipe (take a closed disk $x^{2}+y^{2} \leq r^{2}$, with $0<r<\frac{1}{2}$ so that it lies in $\Omega$, find the minimum of $V$ on the ball's boundary, etc.) shows that every open disk $x^{2}+y^{2}<r^{2}$ with $0<r<\frac{1}{2}$ is a domain of stability, and consequently so is the union of all of them, the open disk $x^{2}+y^{2}<\frac{1}{4}$.
(Our answer $x^{2}+y^{2}<\frac{1}{4}$ is far from optimal, as the computer-drawn phase portrait below shows, but it's the best that we get from this particular Liapunov function.)

6. Away from the origin, we have in polar coordinates

$$
\begin{aligned}
\dot{r} & =\frac{x \dot{x}+y \dot{y}}{r}=\frac{x(-y+x f(x, y))+y(x+y f(x, y))}{r} \\
& =\frac{\left(x^{2}+y^{2}\right) f(x, y)}{r}=r\left(1-r^{2}\left(1+r^{2} \cos ^{2} \theta\right)\right)
\end{aligned}
$$

and

$$
\dot{\theta}=\frac{x \dot{y}-y \dot{x}}{r^{2}}=\frac{x(x+y f(x, y))-y(-y+x f(x, y))}{r^{2}}=\frac{x^{2}+y^{2}}{r^{2}}=1 .
$$

So, for example, if $r=\frac{1}{2}$ then

$$
\dot{r}=\frac{1}{2}\left(1-\frac{1}{4} \cdot\left(1+\frac{1}{4} \cos ^{2} \theta\right)\right) \geq \frac{1}{2}\left(1-\frac{1}{4} \cdot \frac{5}{4}\right)>0
$$

for all $\theta$, and if $r=2$ then

$$
\dot{r}=2\left(1-4 \cdot\left(1+4 \cos ^{2} \theta\right)\right) \leq 2(1-4 \cdot 1)<0
$$

for all $\theta$. This implies that the annulus $\frac{1}{2} \leq r \leq 2$ is a trapping region, and it contains no equilibrium (since $\dot{\theta}=1$ ), so by the Poincaré-Bendixson theorem it must contain at least one limit cycle.


