TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2022-08-26 kl. 8.00-13.00

No aids allowed, except drawing tools (rulers and such). You may write your answers in English or in Swedish, or some mixture thereof.
Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade $n \in\{3,4,5\}$ you need at least n passed problems and at least $3 n-1$ points.
Solutions will be posted on the course webpage afterwards. Good luck!

1. The following equation has been used as a model for insect populations (where the last term represents predation by birds):

$$
\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right)-\frac{b N^{2}}{a^{2}+N^{2}} \quad(r, K, a, b>0)
$$

Show how to rescale the variables to obtain the dimensionless ODE

$$
\frac{d n}{d \tau}=\alpha n\left(1-\frac{n}{\beta}\right)-\frac{n^{2}}{1+n^{2}}
$$

State clearly how the new variables (n, τ) and parameters (α, β) are defined in terms of the original variables (N, t) and parameters (r, K, a, b).
2. Compute the general solution of the linear system

$$
\dot{x}=-x+3 y, \quad \dot{y}=-y,
$$

and draw the phase portrait.
3. Investigate stability of equilibria, and sketch the phase portrait, for the system

$$
\dot{x}=x+x^{3}-y, \quad \dot{y}=x(y-2) .
$$

4. Show that $V(x, y)=x^{2}+y^{2}$ is a strong Liapunov function for the system

$$
\dot{x}=y-x^{3}, \quad \dot{y}=-x+y^{3}\left(x^{2}-1\right)
$$

in the region $|x|<1$. Use this to show that the origin is an asymptotically stable equilibrium and to determine a domain of stability.
5. Let \mathbf{x}^{*} be an equilibrium point for the system $\dot{\mathbf{x}}=\mathbf{X}(\mathbf{x}), \mathbf{x} \in \mathbf{R}^{n}$. Give the precise definitions of the following concepts:
(a) \mathbf{x}^{*} is stable.
(b) \mathbf{x}^{*} is asymptotically stable.
(c) \mathbf{x}^{*} is globally asymptotically stable.
6. Determine the general solution of the ODE

$$
\ddot{x}(t)+4 x(t)=\frac{1}{\cos 2 t}, \quad|t|<\frac{\pi}{4} .
$$

Solutions for TATA71 2022-08-26

1. With $N=c_{1} n$ and $t=c_{2} \tau$ the equation becomes

$$
\frac{d n}{d \tau}=\frac{c_{2}}{c_{1}}\left(r c_{1} n\left(1-\frac{c_{1} n}{K}\right)-\frac{b c_{1}^{2} n^{2}}{a^{2}+c_{1}^{2} n^{2}}\right)
$$

Now let $c_{1}=a$ och $c_{2}=a / b$ to obtain

$$
\frac{d n}{d \tau}=\alpha n\left(1-\frac{n}{\beta}\right)-\frac{n^{2}}{1+n^{2}}
$$

where $\alpha=c_{2} r=a r / b$ and $\beta=K / c_{1}=K / a$.
Answer. Dimensionless variables: $n=N / a$ and $\tau=b t / a$. Dimensionless parameters: $\alpha=a r / b$ and $\beta=K / a$.
2. The second equation $\dot{y}=-y$ immediately gives $y(t)=C e^{-t}$, and then the first equation $\dot{x}=-x+3 y$ reads $\dot{x}+x=3 C e^{-t}$, which is equivalent to $\frac{d}{d t}\left(x(t) e^{t}\right)=3 C$, so that $x(t)=(3 C t+D) e^{-t}$. The origin is a stable improper node with principal direction $(1,0)^{T}$ and nullclines $x=3 y$ and $y=0$.

Answer. The general solution is $x(t)=(3 C t+D) e^{-t}, y(t)=C e^{-t}$, where C and D are arbitrary real constants. The phase portrait is shown below.

3. We have $\dot{y}=x(y-2)=0$ iff $x=0$ or $y=2$. Inserting this into the equation $\dot{x}=x+x^{3}-y=0$ we get at once $y=0$ when $x=0$, and when $y=2$ we have $x+x^{3}=2$; this equation has an obvious root $x=1$, and it is the only one, since $x+x^{3}$ is an increasing function of x. Hence the equilibrium points are $(0,0)$ and $(1,2)$.
The Jacobian matrix of the system is

$$
J(x, y)=\left(\begin{array}{cc}
1+3 x^{2} & -1 \\
y-2 & x
\end{array}\right)
$$

so at the equilibria we have

$$
J(0,0)=\left(\begin{array}{cc}
1 & -1 \\
-2 & 0
\end{array}\right), \quad J(1,2)=\left(\begin{array}{cc}
4 & -1 \\
0 & 1
\end{array}\right) .
$$

Thus $(0,0)$ is a saddle (eigenvalues 2 and -1 with eigenvectors $(1,-1)^{T}$ and $(1,2)^{T}$), while $(1,2)$ is an unstable node (eigenvalues 4 and 1 with eigenvectors $(1,0)^{T}$ and $\left.(1,3)^{T}\right)$.
Answer. Saddle at $(0,0)$, unstable node at $(1,2)$. The phase portrait is shown below.

4. We compute

$$
\begin{aligned}
\dot{V} & =V_{x} \dot{x}+V_{y} \dot{y} \\
& =2 x\left(y-x^{3}\right)+2 y\left(-x+y^{3}\left(x^{2}-1\right)\right) \\
& =-2 x^{4}-2 y^{4}\left(1-x^{2}\right),
\end{aligned}
$$

so \dot{V} is negative definite in the strip $\Omega=\{|x|<1\}$ (i.e., if $|x|<1$ and $(x, y) \neq$ $(0,0)$, then $\dot{V}<0$). Moreover V is obviously positive definite (in all of \mathbf{R}^{2}), so it is indeed a strong Liapunov function in Ω. By the strong Liapunov theorem, this immediately implies that the origin is asymptotically stable. Any sublevelset of V contained in Ω, i.e., any disk $x^{2}+y^{2} \leq r^{2}$ with $0<r<1$, provides a domain of stability, and we can take the union of all these disks to show that the unit disk $x^{2}+y^{2}<1$ is a domain of stability.
5. (a) \mathbf{x}^{*} is stable if for every neighbourhood U of \mathbf{x}^{*} there is neighbourhood V of \mathbf{x}^{*} such that every trajectory starting in V stays in U for all $t \geq 0$.
(b) \mathbf{x}^{*} is asymptotically stable if it is stable and has a neighbourhood W such that every trajectory starting in W converges to \mathbf{x}^{*} as $t \rightarrow \infty$.
(c) \mathbf{x}^{*} is globally asymptotically stable if it is stable and every trajectory (starting anywhere in \mathbf{R}^{n}) converges to \mathbf{x}^{*} as $t \rightarrow \infty$.
6. The general solution of the homogeneous equation $\ddot{x}(t)+4 x(t)=0$ is $x(t)=$ $A \cos 2 t+B \sin 2 t$, so the corresponding first-order system obtained by letting $x_{1}=x$ and $x_{2}=\dot{x}$ has the general solution $x_{1}(t)=A \cos 2 t+B \sin 2 t$, $x_{2}(t)=\dot{x}_{1}(t)=-2 A \sin 2 t+2 B \cos 2 t$. This gives the fundamental matrix

$$
\Phi(t)=\left(\begin{array}{cc}
\cos 2 t & \sin 2 t \\
-2 \sin 2 t & 2 \cos 2 t
\end{array}\right) .
$$

For the inhomogeneous system we let $\mathbf{x}=\Phi \mathbf{y}$ to obtain

$$
\begin{aligned}
\dot{\mathbf{x}} & =\left(\begin{array}{cc}
0 & 1 \\
-4 & 0
\end{array}\right) \mathbf{x}+\binom{0}{1 / \cos 2 t} \Longleftrightarrow \Phi \dot{\mathbf{y}}=\binom{0}{1 / \cos 2 t} \\
& \Longleftrightarrow \quad \dot{\mathbf{y}}=\frac{1}{2}\left(\begin{array}{cc}
2 \cos 2 t & -\sin 2 t \\
2 \sin 2 t & \cos 2 t
\end{array}\right)\binom{0}{1 / \cos 2 t}=\frac{1}{2}\binom{-\sin 2 t / \cos 2 t}{1} .
\end{aligned}
$$

Integration (using $\cos 2 t>0$ for $|t|<\pi / 4$) now gives

$$
\mathbf{y}=\binom{\frac{1}{4} \ln (\cos 2 t)+A}{\frac{1}{2} t+B}
$$

and then $x(t)=x_{1}(t)=y_{1}(t) \cos 2 t+y_{2}(t) \sin 2 t$.
Answer. $x(t)=A \cos 2 t+B \sin 2 t+\frac{1}{4} \cos 2 t \ln (\cos 2 t)+\frac{1}{2} t \sin 2 t$, for $|t|<\frac{\pi}{4}$.

