Matematiska institutionen

TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2023-01-12 kl. 8.00-13.00

No aids allowed, except drawing tools (rulers and such). You may write your answers in English or in Swedish, or some mixture thereof.
Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade $n \in\{3,4,5\}$ you need at least n passed problems and at least $3 n-1$ points.
Solutions will be posted on the course webpage afterwards. Good luck!

1. Compute the general solution and draw the phase portrait for the linear system $\dot{x}=2 x+4 y, \dot{y}=x-y$.
2. Investigate stability of the equilibrium points and sketch the phase portrait for the system $\dot{x}=-y, \dot{y}=2 x-x^{2}-y$.
3. Given that $x(t)=t$ is a solution, use reduction of order to find the general solution of the ODE

$$
\left(1+t^{2}\right) \ddot{x}(t)-2 t \dot{x}(t)+2 x(t)=0 .
$$

4. Consider the following two-species population model, where p, r, s, K and L are positive parameters:

$$
d x / d t=r x(1-x / K), \quad d y / d t=s y(1-y / L)-p x y
$$

Suggest a brief interpretation of what kind of situation this system may describe. Show how rescale the variables (x, y, t) to obtain the dimensionless system

$$
d X / d \tau=X(1-X), \quad d Y / d \tau=\alpha Y(1-Y)-\beta X Y .
$$

What condition on α and β is required for the existence of a nontrivial equilibrium $\left(X^{*}, Y^{*}\right)$ with $X^{*}>0$ and $Y^{*}>0$?
5. Let \mathbf{x}^{*} be an equilibrium point for the system $\dot{\mathbf{x}}=\mathbf{X}(\mathbf{x}), \mathbf{x} \in \mathbf{R}^{n}$. Give the precise definitions of the following concepts:
(a) \mathbf{x}^{*} is stable.
(b) \mathbf{x}^{*} is asymptotically stable.
(c) \mathbf{x}^{*} is globally asymptotically stable.
6. Show that the origin is an asymptotically stable equilibrium for the system

$$
\dot{x}=-y+\left(x-\frac{3}{4}\right) y^{4}, \quad \dot{y}=4 x-y^{3},
$$

and determine a domain of stability.
(Hint: Try a Liapunov function of the form $V(x, y)=a x^{2}+y^{2}$.)

Solutions for TATA71 2023-01-12

1. The system's matrix $\left(\begin{array}{cc}2 & 4 \\ 1 & -1\end{array}\right)$ has eigenvalues 3 and -2 with eigenvectors $\binom{4}{1}$ and $\binom{-1}{1}$, respectively, so the general solution is

$$
\binom{x(t)}{y(t)}=A e^{3 t}\binom{4}{1}+B e^{-2 t}\binom{-1}{1}
$$

where A and B are arbitrary real constants. The phase portrait is a saddle; taking the nullclines $x+2 y=0$ and $x-y=0$ into account, together with the principal directions found above, we obtain the following picture:

2. The nullclines $y=0$ and $y=x(2-x)$ intersect at the equilibrium points $(x, y)=(0,0)$ and $(2,0)$. The Jacobian matrix is

$$
J(x, y)=\left(\begin{array}{cc}
0 & -1 \\
2-2 x & -1
\end{array}\right), \quad J(0,0)=\left(\begin{array}{cc}
0 & -1 \\
2 & -1
\end{array}\right), \quad J(2,0)=\left(\begin{array}{cc}
0 & -1 \\
-2 & -1
\end{array}\right)
$$

The trace-determinant criterion shows that $(0,0)$ is a stable focus since $\operatorname{tr} J(0,0)=-1<0$ and $\operatorname{det} J(0,0)=2>\left(\frac{1}{2} \operatorname{tr} J(0,0)\right)^{2}=\frac{1}{4}$, while $(2,0)$ is a saddle since $\operatorname{det} J(2,0)=-2<0$; we may also compute the eigenvalues -2 and 1 with corresponding principal directions $\binom{1}{2}$ and $\binom{-1}{1}$. Phase portrait:

3. Let $x(t)=t Y(t)$. Then $\dot{x}=Y+t \dot{Y}$ and $\ddot{x}=2 \dot{Y}+t \ddot{Y}$, which inserted into the ODE gives $0=\left(1+t^{2}\right) \ddot{x}-2 t \dot{x}+2 x=\left(1+t^{2}\right)(2 \dot{Y}+t \ddot{Y})-2 t(Y+t \dot{Y})+2 t Y=$ $0 Y+2 \dot{Y}+t\left(1+t^{2}\right) \ddot{Y}=2 y+t\left(1+t^{2}\right) \dot{y}$, where $y(t)=\dot{Y}(t)$. Writing this as

$$
0=\dot{y}+\frac{2}{t\left(1+t^{2}\right)} y=\dot{y}+\left(\frac{2}{t}-\frac{2 t}{1+t^{2}}\right) y
$$

we find the integrating factor $\exp \left(2 \ln |t|-\ln \left(1+t^{2}\right)\right)=t^{2} /\left(1+t^{2}\right)$, so that $\frac{t^{2}}{1+t^{2}} y(t)=C$, and we obtain the general solution $x(t)=t Y(t)$ where

$$
Y(t)=\int y(t) d t=C \int \frac{1+t^{2}}{t^{2}} d t=C\left(-\frac{1}{t}+t\right)+D
$$

Answer. $x(t)=C\left(t^{2}-1\right)+D t$, where C and D are arbitrary real constants.
4. The x-species is obviously unaffected by the y-species, and grows logistically. The y-species would also grow logistically on its own, but for some reason (perhaps competition for resources, where the x-species always wins) its growth rate is negatively affected by the presence of the x-species.

Letting $t=c_{0} \tau, x=c_{1} X$ and $y=c_{2} Y$ turns the ODEs into

$$
\frac{d X}{d \tau}=c_{0} r X\left(1-\frac{c_{1} X}{K}\right), \quad \frac{d Y}{d \tau}=c_{0} s Y\left(1-\frac{c_{2} Y}{L}\right)-c_{0} p c_{1} X Y
$$

To obtain the given dimensionless form, we must therefore take $c_{0}=1 / r$, $c_{1}=K$ and $c_{2}=L$; the new parameters are then $\alpha=c_{0} s=s / r$ and $\beta=$ $c_{0} p c_{1}=p K / r$ (and they are obviously also positive). In summary:

$$
\tau=r t, \quad X=\frac{x}{K}, \quad Y=\frac{y}{L}, \quad \alpha=\frac{s}{r}, \quad \beta=\frac{p K}{r} .
$$

A nontrivial equilibrium (X^{*}, Y^{*}) occurs where the X-nullcline $X=1$ intersects the Y-nullcline $\alpha(1-Y)-\beta X=0$. This gives $\left(X^{*}, Y^{*}\right)=(1,1-\beta / \alpha)$, which lies in the positive quadrant iff $\beta / \alpha<1$. (In terms of the original parameters this becomes $p K<s$, so the maximal per-capita growth rate s of the y-species must be larger than the negative influence $p K$ that the x-species exerts at its equilibrium population size K.)
5. (a) \mathbf{x}^{*} is stable if for every neighbourhood U of \mathbf{x}^{*} there is neighbourhood V of \mathbf{x}^{*} such that every trajectory starting in V stays in U for all $t \geq 0$.
(b) \mathbf{x}^{*} is asymptotically stable if it is stable and has a neighbourhood W such that every trajectory starting in W converges to \mathbf{x}^{*} as $t \rightarrow \infty$.
(c) \mathbf{x}^{*} is globally asymptotically stable if it is stable and every trajectory (starting anywhere in \mathbf{R}^{n}) converges to \mathbf{x}^{*} as $t \rightarrow \infty$.
6. With $V(x, y)=4 x^{2}+y^{2}$, which is clearly positive definite, we compute

$$
\begin{aligned}
\dot{V} & =8 x \cdot\left(-y+\left(x-\frac{3}{4}\right) y^{4}\right)+2 y \cdot\left(4 x-y^{3}\right) \\
& =-2 y^{4}-6 x y^{4}+8 x^{2} y^{4} \\
& =-2 y^{4}(1-x)(1+4 x),
\end{aligned}
$$

which is less than or equal to zero iff $y=0$ or $-\frac{1}{4} \leq x \leq 1$, which implies that V is a weak Liapunov function on the open strip

$$
\Omega=\left\{(x, y) \in \mathbf{R}^{2}:-\frac{1}{4}<x<1\right\} .
$$

The set C of points in Ω where $\dot{V}=0$ is the line segment $-\frac{1}{4}<x<1, y=0$, and there we have $\dot{y}=4 x-0^{3} \neq 0$ except at the equilibrium (0,0). So the non-equilibrium trajectories intersect the line segment C transversally, and can therefore not lie completely in C. The hypotheses for LaSalle's theorem are thus satisfied, so the origin is asymptotically stable.
For any k with $0<k<1 / 4$, the set

$$
B=\left\{(x, y) \in \mathbf{R}^{2}: V(x, y) \leq k\right\}=\left\{(x, y) \in \mathbf{R}^{2}: 4 x^{2}+y^{2} \leq k\right\}
$$

is a topological closed ball (in the shape of an ellipse) contained in Ω, and the minimum of V on the boundary ∂B is clearly k. According to the recipe in LaSalle's theorem, the set

$$
N(k)=\{(x, y) \in \Omega: V(x, y)<k\}=\left\{(x, y) \in \mathbf{R}^{2}: 4 x^{2}+y^{2}<k\right\}
$$

is therefore a domain of stability, and since this holds for any k in the interval $(0,1 / 4)$, we can go all the way up to $k=1 / 4$ by taking the union

$$
N=\bigcup_{0<k<1 / 4} N(k)=\left\{(x, y) \in \mathbf{R}^{2}: 4 x^{2}+y^{2}<1 / 4\right\} .
$$

(The argument for this is the usual one: any point in N lies in some $N(k)$, so the trajectory starting there converges to $(0,0)$ and cannot leave $N(k)$; hence it cannot leave N either. So N is indeed a domain of stability.)
For illustration, here is a computer-drawn phase portrait with Ω in gray and N in blue:

