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TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2023-01-12 kl. 8.00–13.00

No aids allowed, except drawing tools (rulers and such). You may write your
answers in English or in Swedish, or some mixture thereof.

Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade
n ∈ {3,4,5} you need at least n passed problems and at least 3n −1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

1. Compute the general solution and draw the phase portrait for the linear
system ẋ = 2x +4y , ẏ = x − y .

2. Investigate stability of the equilibrium points and sketch the phase portrait
for the system ẋ =−y , ẏ = 2x −x2 − y .

3. Given that x(t ) = t is a solution, use reduction of order to find the general
solution of the ODE

(1+ t 2)ẍ(t )−2t ẋ(t )+2x(t ) = 0.

4. Consider the following two-species population model, where p, r , s, K
and L are positive parameters:

d x/d t = r x (1−x/K ) , d y/d t = s y
(
1− y/L

)−px y,

Suggest a brief interpretation of what kind of situation this system may de-
scribe. Show how rescale the variables (x, y, t ) to obtain the dimensionless
system

d X /dτ= X (1−X ), dY /dτ=αY (1−Y )−βX Y .

What condition on α and β is required for the existence of a nontrivial
equilibrium (X ∗,Y ∗) with X ∗ > 0 and Y ∗ > 0 ?

5. Let x∗ be an equilibrium point for the system ẋ = X(x), x ∈ Rn . Give the
precise definitions of the following concepts:

(a) x∗ is stable.

(b) x∗ is asymptotically stable.

(c) x∗ is globally asymptotically stable.

6. Show that the origin is an asymptotically stable equilibrium for the system

ẋ =−y + (
x − 3

4

)
y4, ẏ = 4x − y3,

and determine a domain of stability.

(Hint: Try a Liapunov function of the form V (x, y) = ax2 + y2.)



Solutions for TATA71 2023-01-12
1. The system’s matrix

(
2 4
1 −1

)
has eigenvalues 3 and −2 with eigenvectors

(
4
1

)
and

(−1
1

)
, respectively, so the general solution is(

x(t )
y(t )

)
= Ae3t

(
4
1

)
+Be−2t

(−1
1

)
,

where A and B are arbitrary real constants. The phase portrait is a saddle;
taking the nullclines x +2y = 0 and x − y = 0 into account, together with
the principal directions found above, we obtain the following picture:

2. The nullclines y = 0 and y = x(2− x) intersect at the equilibrium points
(x, y) = (0,0) and (2,0). The Jacobian matrix is

J (x, y) =
(

0 −1
2−2x −1

)
, J (0,0) =

(
0 −1
2 −1

)
, J (2,0) =

(
0 −1
−2 −1

)
.

The trace–determinant criterion shows that (0,0) is a stable focus since
tr J(0,0) = −1 < 0 and det J(0,0) = 2 > (1

2 tr J(0,0)
)2 = 1

4 , while (2,0) is a
saddle since det J (2,0) =−2 < 0; we may also compute the eigenvalues −2
and 1 with corresponding principal directions

(
1
2

)
and

(−1
1

)
. Phase portrait:



3. Let x(t ) = t Y (t ). Then ẋ = Y +t Ẏ and ẍ = 2Ẏ +t Ÿ , which inserted into the
ODE gives 0 = (1+ t 2)ẍ −2t ẋ +2x = (1+ t 2)(2Ẏ + t Ÿ )−2t (Y + t Ẏ )+2tY =
0Y +2Ẏ + t (1+ t 2)Ÿ = 2y + t (1+ t 2)ẏ , where y(t ) = Ẏ (t ). Writing this as

0 = ẏ + 2

t (1+ t 2)
y = ẏ +

(
2

t
− 2t

1+ t 2

)
y,

we find the integrating factor exp
(
2ln |t |− ln(1+ t 2)

)= t 2/(1+ t 2), so that
t 2

1+t 2 y(t ) =C , and we obtain the general solution x(t ) = tY (t ) where

Y (t ) =
∫

y(t )d t =C
∫

1+ t 2

t 2
d t =C

(
−1

t
+ t

)
+D.

Answer. x(t ) =C (t 2 −1)+Dt , where C and D are arbitrary real constants.

4. The x-species is obviously unaffected by the y-species, and grows logisti-
cally. The y-species would also grow logistically on its own, but for some
reason (perhaps competition for resources, where the x-species always
wins) its growth rate is negatively affected by the presence of the x-species.

Letting t = c0τ, x = c1X and y = c2Y turns the ODEs into

d X

dτ
= c0r X

(
1− c1X

K

)
,

dY

dτ
= c0sY

(
1− c2Y

L

)
− c0pc1X Y .

To obtain the given dimensionless form, we must therefore take c0 = 1/r ,
c1 = K and c2 = L; the new parameters are then α = c0s = s/r and β =
c0pc1 = pK /r (and they are obviously also positive). In summary:

τ= r t , X = x

K
, Y = y

L
, α= s

r
, β= pK

r
.

A nontrivial equilibrium (X ∗,Y ∗) occurs where the X -nullcline X = 1 inter-
sects the Y -nullcline α(1−Y )−βX = 0. This gives (X ∗,Y ∗) = (1,1−β/α),
which lies in the positive quadrant iff β/α < 1. (In terms of the original
parameters this becomes pK < s, so the maximal per-capita growth rate s
of the y-species must be larger than the negative influence pK that the
x-species exerts at its equilibrium population size K .)

5. (a) x∗ is stable if for every neighbourhood U of x∗ there is neighbour-
hood V of x∗ such that every trajectory starting in V stays in U for
all t ≥ 0.

(b) x∗ is asymptotically stable if it is stable and has a neighbourhood W
such that every trajectory starting in W converges to x∗ as t →∞.

(c) x∗ is globally asymptotically stable if it is stable and every trajectory
(starting anywhere in Rn) converges to x∗ as t →∞.



6. With V (x, y) = 4x2 + y2, which is clearly positive definite, we compute

V̇ = 8x · (−y + (
x − 3

4

)
y4)+2y · (4x − y3)

=−2y4 −6x y4 +8x2 y4

=−2y4(1−x)(1+4x),

which is less than or equal to zero iff y = 0 or −1
4 ≤ x ≤ 1, which implies

that V is a weak Liapunov function on the open strip

Ω=
{

(x, y) ∈ R2 : −1
4 < x < 1

}
.

The set C of points inΩwhere V̇ = 0 is the line segment −1
4 < x < 1, y = 0,

and there we have ẏ = 4x −03 ̸= 0 except at the equilibrium (0,0). So the
non-equilibrium trajectories intersect the line segment C transversally,
and can therefore not lie completely in C . The hypotheses for LaSalle’s
theorem are thus satisfied, so the origin is asymptotically stable.

For any k with 0 < k < 1/4, the set

B =
{

(x, y) ∈ R2 : V (x, y) ≤ k
}
=

{
(x, y) ∈ R2 : 4x2 + y2 ≤ k

}
is a topological closed ball (in the shape of an ellipse) contained in Ω,
and the minimum of V on the boundary ∂B is clearly k. According to the
recipe in LaSalle’s theorem, the set

N (k) =
{

(x, y) ∈Ω : V (x, y) < k
}
=

{
(x, y) ∈ R2 : 4x2 + y2 < k

}
is therefore a domain of stability, and since this holds for any k in the
interval (0,1/4), we can go all the way up to k = 1/4 by taking the union

N = ⋃
0<k<1/4

N (k) =
{

(x, y) ∈ R2 : 4x2 + y2 < 1/4
}

.

(The argument for this is the usual one: any point in N lies in some N (k),
so the trajectory starting there converges to (0,0) and cannot leave N (k);
hence it cannot leave N either. So N is indeed a domain of stability.)

For illustration, here is a computer-drawn phase portrait withΩ in gray
and N in blue:


