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TATA71 Ordinira differentialekvationer och dynamiska system
Tentamen 2023-08-25 kl. 8.00-13.00

No aids allowed, except drawing tools (rulers and such). You may write your
answers in English or in Swedish, or some mixture thereof.

Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade
n € {3,4,5} you need at least n passed problems and at least 3n — 1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

1. Derive the solution formula for the logistic equation x = rx(1 — x/K)
(where r and K are positive constants) with initial value x(0) = xp.

2. Investigate stability of the equilibrium points and sketch the phase portrait
for the system x = y(x—y), y = x - 2.

3. Write the system
x:—y+x(1—x2—y2), y:x+y(1—x2—y2)
in polar coordinates, and use this to sketch the phase portrait.

4. Solve the linear system
Xx=-x-2y, y=2x-5y, (x(0), y(0)) = (x0, ¥0)

explicitly in the two cases (xo, yo) = (2,2) and (xo, o) = (0,—2). Draw the
two solution curves (x(t), y(¢)) for ¢ = 0 in the xy-plane.

5. Consider a bacterial culture growing in a dish, according to the logistic
equation x = rx(1 — x/K), and suppose that a mutation causes another
strain of the bacterium to appear, with slightly different properties, so that
its growth would be given by y = sy(1 — y/L) if it were on its own. The
situation with both strains growing together may then be modelled by the

system
x:rx(l—x;;y), y:sy(l—xzy).

By studying the phase portrait, determine what conditions the positive
parameters (r, s, K, L) must satisfy in order for the mutant strain (y) to
outcompete the original strain (x).

6. Compute the general solution of the ODE

i} . 1
X(t)+3x(t)+2x(1) = —1 T



Solutions for TATA71 2023-08-25

1. As we have done in class, use separation of variables, or let y(£) = 1/x(%).
The result should be x(£) = Kxo / (xo + (K — xp)e”"").

2. The equilibrium points are (x, y) = (2,0) and (2,2). Jacobian matrix:

y x-=2y (0 2 (2 -2
1 0 ) = ](2,0)_( ) ](2,2)_(1 )

](x’y):( 10 0

By the trace-determinant criterion, (2,2) is an unstable focus, while (2, 0)
is a saddle (which can also be seen from the eigenvalues +v/2, with corre-
sponding principal directions (+v/2, 1)).
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3. With (x, y) = (r cos8, r sinf) we have

. xk+yy _ X+ )1 -x%-y?)
r r

=r(l- r2)

and

b= Xy—xy _ X2+ y? B

2 2

We see that the angle 6 increases at a steady rate, while the motion in
the radial direction follows the 1-dimensional phase portrait of the ODE
iF=r(1-r? forr=0: “0— 1—". So the solution curves are counter-
clockwise spirals, together with the unit circle (a stable limit cycle) and the
equilibrium point at the origin.
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4. The system’s matrix (3! Z%) has a double eigenvalue A = -3, and it’s not a
constant multiple of the identity matrix, so the origin is a stable improper
node with principal direction given by the corresponding eigenvector (1, 1).
This immediately implies that (x(2), y(1)) = e~3(2,2) is the solution with
initial values (xg, yo) = (2,2).

The change of variables

transforms the system into

S 1 Y s R e[ ]

which for ¢ = 1/2 takes the canonical form

rrA (A [ R e R
de\v) lo =3/\v v(n)) =€ vo |°

When (x, yo) = (0,-2) we have (uy, vp) = (—2,4), so the solution in that

case is
X(t) _ -3t 1 1/2\(-2+4t -3t 4t
yol~¢ 1 o 4 |7 lar-2

The first curve obviously runs along the line y = x. To draw the second
curve, it is probably easiest to consider the nullclines and the principal
direction, like when sketching the whole phase portrait. Here is a picture
with the two curves for ¢ = 0, drawn in black on top of the phase portrait:
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Answer. (x(1),y(1)) = e73%(2,2) and (x(2), y(1)) = e 3(41,41 — 2), respec-
tively.



5. For the qualitative outcome, the values of the intrinsic growth rates r and s
are immaterial. The only important factor is whether the carrying capacity
for the new strain (L) is greater or less than the original one (K), since this
determines the relative positions of the nullclines x+ y=Kand x+ y = L.

The figures below are drawn with (r,s) = (1,2) and K = 2. First the case
when L < K (illustrated for L = 1). In this case, all solutions in the positive
quadrant converge towards the equilibrium (K,0) on the x-axis, so the
new strain goes extinct and the old one prevails:
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But if L > K (illustrated with L = 3 in the figure), then the new strain
outcompetes the old one, since all solutions in the positive quadrant
converge to (0, L) instead:




There is also the borderline case K = L, which may be ignored, since it
“never happens in reality” anyway. But it can be seen that in this case every
point on the line x + y = K is an equilibrium, and the initial values (xo, yo)
and the parameters (7, s) determine which of these equilibria that a given
solution curve converges to:

Answer. The new strain outcompetes the old one if and only if L > K.

6. From the characteristic polynomial p(r) = r2+3r+2=(r+1)(r+2) we find
the general solution of the homogeneous equation, xnom (£) = Ae”'+Be %!,
so we seek a solution of the form x() = y1 (e " + yg(t)e_m, using the
method of variation of constants. This leads to
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e—t e—2t yl B 0
—e~t 272 \j,) " \1/(1+€%)
— et _ t
yl(t)—fre%dt—arctan(e )+ A,

so that

—e?! 1 2t
yg(t):fmdt:—iln(l+e )+ B.

Anwer. x(t) = e arctan(e’) — %e‘”ln(l +e*)+ Ae !+ Be 2L,



