Matematiska institutionen

TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2024-01-11 kl. 8.00-13.00

No aids allowed, except drawing tools (rulers and such). You may write your answers in English or in Swedish, or some mixture thereof.
Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade $n \in\{3,4,5\}$ you need at least n passed problems and at least $3 n-1$ points.
Solutions will be posted on the course webpage afterwards. Good luck!

1. Nondimensionalize the following predator-prey system by rescaling the variables:

$$
\frac{d x}{d t}=r x-\frac{a x y}{m+x}, \quad \frac{d y}{d t}=-s y+\frac{b x y}{m+x} .
$$

Please state clearly how your new dimensionless variables and parameters are related to the original ones.
2. Compute the general solution $(x(t), y(t))$ of the linear system

$$
\dot{x}=x+2 y, \quad \dot{y}=x,
$$

and draw the phase portrait as carefully as you can.
3. Use linearization to classify the equilibrium points of the system

$$
\dot{x}=-2 x+y+x y, \quad \dot{y}=-y+x y,
$$

and sketch the phase portrait.
4. Compute the general solution $x(t)$ of the linear ODE

$$
\left(t^{2}+1\right) \ddot{x}-(t+1)^{2} \dot{x}+2 t x=0
$$

(Hint: $x(t)=e^{t}$ is a solution.)
5. Show that the origin is an asymptotically stable equilibrium point for the system

$$
\dot{x}=-2 y^{3}+x^{3}\left(x^{2}-4\right), \quad \dot{y}=x-y^{3},
$$

and determine a domain of stability. (Hint: $V(x, y)=x^{2}+y^{4}$.)
6. Let r, K and α be positive constants, and consider the system

$$
\dot{x}=r x\left(1-\frac{x}{K}-\alpha y\right), \quad \dot{y}=r y .
$$

Given a point (x_{0}, y_{0}) with $x_{0}>0$ and $y_{0}>0$, compute the flow $\varphi_{t}\left(x_{0}, y_{0}\right)$ explicitly for $t \geq 0$. (Hint: Bernoulli equation.)

Solutions for TATA71 2024-01-11

1. After the substitutions $t=c_{0} \tau, x=c_{1} X, y=c_{2} Y$ we get

$$
\frac{d X}{d \tau}=c_{0} r X-\frac{c_{0} c_{2} a X Y}{m+c_{1} X}, \quad \frac{d Y}{d \tau}=-c_{0} s Y+\frac{c_{0} c_{1} b X Y}{m+c_{1} X}
$$

Here various choices are possible. For example, we can take $c_{0}=1 / r$, $c_{1}=m$ and $c_{2}=m r / a$ to obtain

$$
\frac{d X}{d \tau}=X-\frac{X Y}{1+X}, \quad \frac{d Y}{d \tau}=-\frac{s}{r} Y+\frac{b}{r} \frac{X Y}{1+X}
$$

Answer. In terms of the dimensionless variables $\tau=r t, X=x / c, Y=$ $a y / m r$ the system becomes $d X / d \tau=X-X Y /(1+X), d Y / d \tau=-\alpha Y+$ $\beta X Y /(1+X)$, with the dimensionless parameters $\alpha=s / r$ and $\beta=b / r$.
2. Write the system as

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right)\binom{x}{y} .
$$

The matrix has eigenvalues 2 and -1 with corresponding eigenvectors $\binom{2}{1}$ and $\binom{1}{-1}$, so the origin is a saddle point and the general solution is

$$
\binom{x(t)}{y(t)}=A\binom{2}{1} e^{2 t}+B\binom{1}{-1} e^{-t}
$$

where A and B are arbitrary constants. Phase portrait:

(The x-nullcline $x+2 y=0$ and the y-nullcline $x=0$ are drawn in red and orange, respectively. Note the outgoing and incoming straight line trajectories along the principal directions $\binom{2}{1}$ and $\binom{1}{-1}$. All other solution curves are hyperbolas with these lines as asymptotes.)
Answer. General solution: $x(t)=2 A e^{2 t}+B e^{-t}, y(t)=A e^{2 t}-B e^{-t}$. Phase portrait: see above.
3. The equilibrium points are easily found to be $(0,0)$ and $(1,1)$. Jacobian matrix:

$$
J(x, y)=\left(\begin{array}{cc}
-2+y & 1+x \\
y & -1+x
\end{array}\right), \quad J(0,0)=\left(\begin{array}{cc}
-2 & 1 \\
0 & -1
\end{array}\right), \quad J(1,1)=\left(\begin{array}{cc}
-1 & 2 \\
1 & 0
\end{array}\right) .
$$

The matrix $J(0,0)$ is triangular, so we read off the eigenvalues -2 and -1 on the diagonal; thus the origin is a stable node. The corresponding eigenvectors are $\binom{1}{0}$ and $\binom{1}{1}$. For $J(1,1)$ we compute the eigenvalues -2 and 1 , with the corresponding eigenvectors $\binom{2}{-1}$ and $\binom{1}{1}$, so $(1,1)$ is a saddle point.
The x-nullcline $-2 x+y+x y=0$ can be written as $y=\frac{2 x}{x+1}=2-\frac{2}{x+1}$, a hyperbola with the lines $x=-1$ and $y=2$ as asymptotes. The y-nullcline $0=-y+x y=y(x-1)$ is the union of the lines $x=1$ and $y=0$.
Taking the signs of \dot{x} and \dot{y} into account, together with the above information about the equilibrium points, we can now sketch the phase portrait (with a zoomed-in version on the right):

(As a bonus piece of information, one may also note that the line $y=x$ is invariant, because of the fact that $\frac{d}{d t}(y-x)=\dot{y}-\dot{x}=-2(y-x)$; indeed, this causes $y-x$ to remain zero if it's zero initially. Moreover, it shows that each solution $(x(t), y(t))$ is such that the perpendicular distance from the point (x, y) to the line $y=x$ decreases as $e^{-2 t}$.)
Answer. There is a stable node at $(0,0)$ (with principal directions $\binom{1}{0}$ and $\binom{1}{1}$) and a saddle point at $(1,1)$ (with principal directions $\binom{2}{-1}$ and $\binom{1}{1}$). Phase portrait: see above.
4. We use reduction of order, setting $x(t)=e^{t} Y(t)$. This gives $\dot{x}=e^{t} Y+e^{t} \dot{Y}$ and $\ddot{x}=e^{t} Y+2 e^{t} \dot{Y}+e^{t} \ddot{Y}$, so that the ODE becomes

$$
\begin{aligned}
0 & =\left(t^{2}+1\right) e^{t}(Y+2 \dot{Y}+\ddot{Y})-(t+1)^{2} e^{t}(Y+\dot{Y})+2 t e^{t} Y \\
& =e^{t}\left(\left(t^{2}+1\right) \ddot{Y}+\left(t^{2}-2 t+1\right) \dot{Y}+0 Y\right) \\
\Longleftrightarrow \quad 0 & =\dot{y}+\left(1-\frac{2 t}{t^{2}+1}\right) y, \quad \text { where } y=\dot{Y} .
\end{aligned}
$$

Here $\exp \left(t-\ln \left(t^{2}+1\right)\right)=e^{t} /\left(t^{2}+1\right)$ is an integrating factor, so

$$
\begin{aligned}
\cdots & \Longleftrightarrow \frac{d}{d t}\left(\frac{e^{t}}{t^{2}+1} y\right)=0 \Longleftrightarrow \frac{e^{t}}{t^{2}+1} y=-A \\
& \Longleftrightarrow Y=\int y d t=A \int\left(-t^{2}-1\right) e^{-t} d t=A\left(t^{2}+2 t+3\right) e^{-t}+B,
\end{aligned}
$$

which gives us $x(t)=e^{t} Y(t)$.
Answer. $x(t)=A\left(t^{2}+2 t+3\right)+B e^{t}$, where A and B are arbitrary constants.
5. The function $V(x, y)=x^{2}+y^{4}$, restricted to the open set

$$
\Omega=\left\{(x, y) \in \mathbf{R}^{2}:|x|<2\right\},
$$

is a strong Liapunov function for this system's equilibrium point $(0,0) \in \Omega$, since $V(0,0)=0, V=x^{2}+y^{4}>0$ in $\Omega \backslash\{(0,0)\}$, and $\dot{V}=2 x \dot{x}+4 y^{3} \dot{y}=$ $2 x\left(-2 y^{3}+x^{3}\left(x^{2}-4\right)\right)+4 y^{3}\left(x-y^{3}\right)=-2 x^{4}\left(4-x^{2}\right)-4 y^{6}<0$ in $\Omega \backslash\{(0,0)\}$. Thus Liapunov's theorem shows that $(0,0)$ is asymptotically stable. For $0<k<4$, the set $B(k)=\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{4} \leq k\right\}$ is a closed topological ball inside Ω, and the minimum value of $V(x, y)$ on the boundary $\partial B(k)=$ $\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{4}=k\right\}$ is obviously $\alpha=k$ (since that's the only value of V on the boundary). Thus, according to the theory, $N(k)=\{(x, y) \in B(k)$: $V(x, y)<\alpha\}=\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{4}<k\right\}$ is a domain of stability whenever $0<k<4$, and we can take the union of all these $N(k)$ to get our answer N.
Answer. For proof of stability, see above. $N=\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{4}<4\right\}$ is a domain of stability.

Remark. As the computer-drawn phase portrait shows, the region N (shaded) is not the largest possible domain of stability, but it's what we get with this particular Liapunov function.
6. Computing the flow $\varphi_{t}\left(x_{0}, y_{0}\right)$ is the same thing as solving the system of ODEs with the initial value $(x(0), y(0))=\left(x_{0}, y_{0}\right)$. From $\dot{y}=r y$ we immediately get $y(t)=y_{0} e^{r t}$. Inserting this into the ODE for x gives

$$
\dot{x}-r\left(1-\alpha y_{0} e^{r t}\right) x=-\frac{r}{K} x^{2},
$$

which is a Bernoulli equation ("linear in x on the left-hand side, a power of x on the right-hand side"). The method for solving such equations is to divide by the power of x appearing on the right-hand side. (We don't have to worry about division by zero, since the solution curve starting at (x_{0}, y_{0}) with $x_{0}>0$ can't reach the line $x=0$, where $\dot{x}=0$.) Dividing by $-x^{2}$ we get

$$
-\frac{\dot{x}}{x^{2}}+r\left(1-\alpha y_{0} e^{r t}\right) \frac{1}{x}=\frac{r}{K},
$$

that is,

$$
\dot{z}+r\left(1-\alpha y_{0} e^{r t}\right) z=\frac{r}{K}, \quad \text { where } \quad z(t)=\frac{1}{x(t)} .
$$

This is a first-order linear ODE which can be solved using the integrating factor $\exp \left(r t-\alpha y_{0} e^{r t}\right)$:

$$
\begin{aligned}
\cdots & \Longleftrightarrow \frac{d}{d t}\left(e^{r t} \exp \left(-\alpha y_{0} e^{r t}\right) z(t)\right)=\frac{r}{K} e^{r t} \exp \left(-\alpha y_{0} e^{r t}\right) \\
& \Longleftrightarrow e^{r t} \exp \left(-\alpha y_{0} e^{r t}\right) z(t)=\frac{-1}{K \alpha y_{0}} \exp \left(-\alpha y_{0} e^{r t}\right)+A \\
& \Longleftrightarrow z(t)=e^{-r t}\left(\frac{-1}{K \alpha y_{0}}+A \exp \left(\alpha y_{0} e^{r t}\right)\right)
\end{aligned}
$$

From $z(0)=1 / x_{0}$ the constant of integration is determined to be

$$
A=\left(\frac{1}{x_{0}}+\frac{1}{K \alpha y_{0}}\right) e^{-\alpha y_{0}},
$$

so the solution for x is

$$
\begin{aligned}
x(t)=\frac{1}{z(t)} & =\frac{1}{e^{-r t}\left(\frac{-1}{K \alpha y_{0}}+\left(\frac{1}{x_{0}}+\frac{1}{K \alpha y_{0}}\right) e^{-\alpha y_{0}} \exp \left(\alpha y_{0} e^{r t}\right)\right)} \\
& =\frac{e^{r t}}{\frac{-1}{K \alpha y_{0}}+\left(\frac{1}{x_{0}}+\frac{1}{K \alpha y_{0}}\right) \exp \left(\alpha y_{0}\left(e^{r t}-1\right)\right)} .
\end{aligned}
$$

Using the fact that the initial values and the parameters are all positive, it can be verified by inspection that the denominator in this expression is positive for all $t \geq 0$. So the solution does not blow up in finite time; the flow is defined for all $t \geq 0$.
Anwer. $\varphi_{t}\left(x_{0}, y_{0}\right)=(x(t), y(t))$ with $x(t)$ as above and $y(t)=y_{0} e^{r t}$.

