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TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2024-01-11 kl. 8.00–13.00

No aids allowed, except drawing tools (rulers and such). You may write your
answers in English or in Swedish, or some mixture thereof.

Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade
n ∈ {3,4,5} you need at least n passed problems and at least 3n −1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

1. Nondimensionalize the following predator–prey system by rescaling the
variables:

dx

dt
= r x − ax y

m +x
,

dy

dt
=−s y + bx y

m +x
.

Please state clearly how your new dimensionless variables and parameters
are related to the original ones.

2. Compute the general solution
(
x(t ), y(t )

)
of the linear system

ẋ = x +2y, ẏ = x,

and draw the phase portrait as carefully as you can.

3. Use linearization to classify the equilibrium points of the system

ẋ =−2x + y +x y, ẏ =−y +x y,

and sketch the phase portrait.

4. Compute the general solution x(t ) of the linear ODE

(t 2 +1)ẍ − (t +1)2ẋ +2t x = 0.

(Hint: x(t ) = e t is a solution.)

5. Show that the origin is an asymptotically stable equilibrium point for the
system

ẋ =−2y3 +x3(x2 −4), ẏ = x − y3,

and determine a domain of stability. (Hint: V (x, y) = x2 + y4.)

6. Let r , K and α be positive constants, and consider the system

ẋ = r x

(
1− x

K
−αy

)
, ẏ = r y.

Given a point (x0, y0) with x0 > 0 and y0 > 0, compute the flow ϕt (x0, y0)
explicitly for t ≥ 0. (Hint: Bernoulli equation.)



Solutions for TATA71 2024-01-11
1. After the substitutions t = c0τ, x = c1X , y = c2Y we get

dX

dτ
= c0r X − c0c2aX Y

m + c1X
,

dY

dτ
=−c0sY + c0c1bX Y

m + c1X
.

Here various choices are possible. For example, we can take c0 = 1/r ,
c1 = m and c2 = mr /a to obtain

dX

dτ
= X − X Y

1+X
,

dY

dτ
=− s

r
Y + b

r

X Y

1+X
.

Answer. In terms of the dimensionless variables τ = r t , X = x/c, Y =
ay/mr the system becomes dX /dτ = X − X Y /(1+ X ), dY /dτ = −αY +
βX Y /(1+X ), with the dimensionless parameters α= s/r and β= b/r .

2. Write the system as (
ẋ
ẏ

)
=

(
1 2
1 0

)(
x
y

)
.

The matrix has eigenvalues 2 and −1 with corresponding eigenvectors
(

2
1

)
and

(
1−1

)
, so the origin is a saddle point and the general solution is(

x(t )
y(t )

)
= A

(
2
1

)
e2t +B

(
1
−1

)
e−t ,

where A and B are arbitrary constants. Phase portrait:

(The x-nullcline x + 2y = 0 and the y-nullcline x = 0 are drawn in red
and orange, respectively. Note the outgoing and incoming straight line
trajectories along the principal directions

(
2
1

)
and

(
1−1

)
. All other solution

curves are hyperbolas with these lines as asymptotes.)

Answer. General solution: x(t ) = 2Ae2t +Be−t , y(t ) = Ae2t −Be−t . Phase
portrait: see above.



3. The equilibrium points are easily found to be (0,0) and (1,1). Jacobian
matrix:

J (x, y) =
(−2+ y 1+x

y −1+x

)
, J (0,0) =

(−2 1
0 −1

)
, J (1,1) =

(−1 2
1 0

)
.

The matrix J(0,0) is triangular, so we read off the eigenvalues −2 and −1
on the diagonal; thus the origin is a stable node. The corresponding
eigenvectors are

(
1
0

)
and

(
1
1

)
. For J(1,1) we compute the eigenvalues −2

and 1, with the corresponding eigenvectors
(

2−1

)
and

(
1
1

)
, so (1,1) is a

saddle point.

The x-nullcline −2x + y + x y = 0 can be written as y = 2x
x+1 = 2− 2

x+1 , a
hyperbola with the lines x =−1 and y = 2 as asymptotes. The y-nullcline
0 =−y +x y = y(x −1) is the union of the lines x = 1 and y = 0.

Taking the signs of ẋ and ẏ into account, together with the above informa-
tion about the equilibrium points, we can now sketch the phase portrait
(with a zoomed-in version on the right):

(As a bonus piece of information, one may also note that the line y = x
is invariant, because of the fact that d

dt (y −x) = ẏ − ẋ =−2(y −x); indeed,
this causes y −x to remain zero if it’s zero initially. Moreover, it shows that
each solution (x(t ), y(t )) is such that the perpendicular distance from the
point (x, y) to the line y = x decreases as e−2t .)

Answer. There is a stable node at (0,0) (with principal directions
(

1
0

)
and(

1
1

)
) and a saddle point at (1,1) (with principal directions

(
2−1

)
and

(
1
1

)
).

Phase portrait: see above.



4. We use reduction of order, setting x(t ) = e t Y (t ). This gives ẋ = e t Y +e t Ẏ
and ẍ = e t Y +2e t Ẏ +e t Ÿ , so that the ODE becomes

0 = (t 2 +1)e t (Y +2Ẏ + Ÿ )− (t +1)2e t (Y + Ẏ )+2te t Y

= e t ((t 2 +1)Ÿ + (t 2 −2t +1)Ẏ +0Y
)

⇐⇒ 0 = ẏ +
(
1− 2t

t 2 +1

)
y, where y = Ẏ .

Here exp
(
t − ln(t 2 +1)

)= e t /(t 2 +1) is an integrating factor, so

· · · ⇐⇒ d

dt

(
e t

t 2 +1
y

)
= 0 ⇐⇒ e t

t 2 +1
y =−A

⇐⇒ Y =
∫

y dt = A
∫

(−t 2 −1)e−t dt = A(t 2 +2t +3)e−t +B ,

which gives us x(t ) = e t Y (t ).

Answer. x(t ) = A(t 2 +2t +3)+Be t , where A and B are arbitrary constants.

5. The function V (x, y) = x2 + y4, restricted to the open set

Ω= {(x, y) ∈ R2 : |x| < 2},

is a strong Liapunov function for this system’s equilibrium point (0,0) ∈Ω,
since V (0,0) = 0, V = x2 + y4 > 0 in Ω \ {(0,0)}, and V̇ = 2xẋ + 4y3 ẏ =
2x(−2y3 + x3(x2 −4))+4y3(x − y3) = −2x4(4− x2)−4y6 < 0 in Ω \ {(0,0)}.
Thus Liapunov’s theorem shows that (0,0) is asymptotically stable. For
0 < k < 4, the set B(k) = {(x, y) ∈ R2 : x2 + y4 ≤ k} is a closed topological
ball insideΩ, and the minimum value of V (x, y) on the boundary ∂B(k) =
{(x, y) ∈ R2 : x2 + y4 = k} is obviously α= k (since that’s the only value of
V on the boundary). Thus, according to the theory, N (k) = {(x, y) ∈ B(k) :
V (x, y) < α} = {(x, y) ∈ R2 : x2 + y4 < k} is a domain of stability whenever
0 < k < 4, and we can take the union of all these N (k) to get our answer N .

Answer. For proof of stability, see above. N = {(x, y) ∈ R2 : x2 + y4 < 4} is a
domain of stability.

Remark. As the computer-drawn phase por-
trait shows, the region N (shaded) is not the
largest possible domain of stability, but it’s
what we get with this particular Liapunov
function.



6. Computing the flow ϕt (x0, y0) is the same thing as solving the system of
ODEs with the initial value (x(0), y(0)) = (x0, y0). From ẏ = r y we immedi-
ately get y(t ) = y0er t . Inserting this into the ODE for x gives

ẋ − r
(
1−αy0er t )x =− r

K
x2,

which is a Bernoulli equation (“linear in x on the left-hand side, a power
of x on the right-hand side”). The method for solving such equations is to
divide by the power of x appearing on the right-hand side. (We don’t have
to worry about division by zero, since the solution curve starting at (x0, y0)
with x0 > 0 can’t reach the line x = 0, where ẋ = 0.) Dividing by −x2 we get

− ẋ

x2
+ r

(
1−αy0er t ) 1

x
= r

K
,

that is,

ż + r
(
1−αy0er t )z = r

K
, where z(t ) = 1

x(t )
.

This is a first-order linear ODE which can be solved using the integrating
factor exp

(
r t −αy0er t

)
:

· · · ⇐⇒ d

dt

(
er t exp

(−αy0er t )z(t )
)
= r

K
er t exp

(−αy0er t )
⇐⇒ er t exp

(−αy0er t )z(t ) = −1

Kαy0
exp

(−αy0er t )+ A

⇐⇒ z(t ) = e−r t
( −1

Kαy0
+ A exp

(
αy0er t ))

From z(0) = 1/x0 the constant of integration is determined to be

A =
(

1

x0
+ 1

Kαy0

)
e−αy0 ,

so the solution for x is

x(t ) = 1

z(t )
= 1

e−r t
( −1

Kαy0
+

(
1

x0
+ 1

Kαy0

)
e−αy0 exp

(
αy0er t ))

= er t

−1

Kαy0
+

(
1

x0
+ 1

Kαy0

)
exp

(
αy0

(
er t −1

)) .

Using the fact that the initial values and the parameters are all positive, it
can be verified by inspection that the denominator in this expression is
positive for all t ≥ 0. So the solution does not blow up in finite time; the
flow is defined for all t ≥ 0.

Anwer. ϕt (x0, y0) = (x(t ), y(t )) with x(t ) as above and y(t ) = y0er t .


