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TATA71 Ordinära differentialekvationer och dynamiska system

Tentamen 2024-03-14 kl. 14.00–19.00

No aids allowed, except drawing tools (rulers and such). You may write your
answers in English or in Swedish, or some mixture thereof.

Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade
n ∈ {3,4,5} you need at least n passed problems and at least 3n −1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

1. Nondimensionalize the logistic equation dx/dt = r x
(
1− x

K

)
(where r and K

are positive constants) by a suitable rescaling of the variables x and t . Draw
the phase portrait for the nondimensionalized equation.

2. Compute the general solution of the linear system

ẋ = 3x −2y, ẏ =−3y,

and draw the phase portrait carefully.

3. Use linearization to classify the equilibrium points of the system

ẋ = x(y −1), ẏ = y −x3,

and sketch the phase portrait.

4. Show that the origin is an asymptotically stable equilibrium for the system

ẋ =−y2 −x3, ẏ = x y.

(Hint: Try a commonly used Liapunov function.) Is the origin globally
asymptotically stable or not?

5. Compute the matrix exponential e At , where A =
(
1 −4
2 −3

)
and t ∈ R.

6. Show thatΦ(t ) =
(
e t 2
1 e−t

)
is a fundamental matrix for the homogeneous

linear system ẋ(t ) = A(t )x(t ), where A(t ) =
( −1 2e t

−e−t 1

)
.

Use this to solve the inhomogeneous system ẋ(t ) = A(t )x(t )+
(
e t/2

0

)
.



Solutions for TATA71 2024-03-14

1. The ODE can be written as d(x/K )
d(r t ) = x

K

(
1− x

K

)
, so in terms of the dimen-

sionless variables y = x/K and s = r t , it becomes dy/ds = y(1− y). Phase
portrait:

y0 1

2. The system matrix A =
(
3 −2
0 −3

)
obviously has the eigenvalues 3 and −3,

so the phase portrait is a saddle, with principal directions given by the
corresponding eigenvectors

(
1
0

)
and

(
1
3

)
. From this it follows that the

general solution is (
x(t )
y(t )

)
=C1e3t

(
1
0

)
+C2e−3t

(
1
3

)
where C1 and C2 are arbitrary real constants. (Alternative method: First
find y(t ) from ẏ =−3y and then find x(t ) from ẋ −3x = y(t ).)

Phase portrait, with the x-nullcline 3x −2y = 0 in red and the y-nullcline
y = 0 in orange, and the principal directions indicated by dashed purple
lines:



3. The equilibrium points are easily found to be (0,0) and (1,1). Jacobian
matrix:

J (x, y) =
(

y −1 x
−3x2 1

)
, J (0,0) =

(−1 0
0 1

)
, J (1,1) =

(
0 1
−3 1

)
.

Hence (0,0) is a saddle point with principal directions given by the eigen-
vectors

(
1
0

)
and

(
0
1

)
, while (1,1) is an unstable focus (complex eigenvalues

1
2 (1± i

p
11) with positive real part). Phase portrait, with x/y-nullclines in

red/orange:

4. The function V (x, y) = x2 + y2 is positive definite and satisfies V̇ = 2xẋ +
2y ẏ = 2x(−y2 − x3)+ 2y · x y = −2x4 ≤ 0 for all (x, y) ∈ R2, so it’s a weak
Liapunov function on R2. The set where V̇ = 0 is the line x = 0, and
on this set the ODEs become (ẋ, ẏ) = (−y2,0), so any trajectory passing
through a point (0, y) ̸= (0,0) on this line is forced to immediately leave
the line (towards the left). So the set where V̇ = 0 contains no complete
trajectory except for the equilibrium point itself, and hence the hypotheses
for LaSalle’s theorem are satisfied, showing that the origin is asymptotically
stable. Moreover, since V is a Liapunov function on the whole space R2

and satisfies the additional condition that V (x, y) →∞ as
√

x2 + y2 →∞,
the origin is even globally asymptotically stable.



5. The eigenvalues of A are −1±2i = α±βi , where α = −1 and β = 2, and
an eigenvector corresponding to α+βi =−1+2i is

(
1+i

1

)= a+bi where
a = (

1
1

)
and b = (

1
0

)
. Taking b and a as the columns of a change-of-basis

matrix M we get the Jordan normal form of A,

J = M−1 AM =
(
1 −1
0 1

)(
1 −4
2 −3

)(
1 1
0 1

)
=

(−1 −2
2 −1

)
=

(
α −β
β α

)
,

so that A = M J M−1 and

exp(At ) = M exp(J t )M−1

=
(
1 1
0 1

)
eαt

(
cosβt −sinβt
sinβt cosβt

)(
1 −1
0 1

)
= e−t

(
cos2t + sin2t −2sin2t

sin2t cos2t − sin2t

)
.

6. Calculation shows that dΦ/dt = AΦ (both sides are equal to diag(e t ,−e−t )),
and that det(Φ) =−1 ̸= 0. This means thatΦ is a fundamental matrix for
the system. We now use the method of variation of constants, setting
x(t ) =Φ(t )y(t ). This gives(

e t/2

0

)
= ẋ− A x = (

Φ ẏ+ Φ̇y
)− A (Φx) =Φ ẏ+ (

Φ̇− AΦ
)︸ ︷︷ ︸

=0

x =Φ ẏ,

so that

ẏ =Φ−1
(
e t/2

0

)
=

(−e−t 2
1 e t

)(
e t/2

0

)
=

(−e−t/2

e t/2

)
,

which after integration becomes

y =
(
2e−t/2 +C1

2e t/2 +C2

)
.

Plugging this back into the defining relation x =Φy, we get the answer:

x(t ) =
(
e t 2
1 e−t

)(
2e−t/2 +C1

2e t/2 +C2

)
=

(
6e t/2

4e−t/2

)
+C1

(
e t

1

)
+C2

(
2

e−t

)
.


