Matematiska institutionen

TATA71 Ordinära differentialekvationer och dynamiska system Tentamen 2024-03-14 kl. 14.00-19.00

No aids allowed, except drawing tools (rulers and such). You may write your answers in English or in Swedish, or some mixture thereof.
Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade $n \in\{3,4,5\}$ you need at least n passed problems and at least $3 n-1$ points. Solutions will be posted on the course webpage afterwards. Good luck!

1. Nondimensionalize the logistic equation $d x / d t=r x\left(1-\frac{x}{K}\right)$ (where r and K are positive constants) by a suitable rescaling of the variables x and t. Draw the phase portrait for the nondimensionalized equation.
2. Compute the general solution of the linear system

$$
\dot{x}=3 x-2 y, \quad \dot{y}=-3 y,
$$

and draw the phase portrait carefully.
3. Use linearization to classify the equilibrium points of the system

$$
\dot{x}=x(y-1), \quad \dot{y}=y-x^{3},
$$

and sketch the phase portrait.
4. Show that the origin is an asymptotically stable equilibrium for the system

$$
\dot{x}=-y^{2}-x^{3}, \quad \dot{y}=x y .
$$

(Hint: Try a commonly used Liapunov function.) Is the origin globally asymptotically stable or not?
5. Compute the matrix exponential $e^{A t}$, where $A=\left(\begin{array}{ll}1 & -4 \\ 2 & -3\end{array}\right)$ and $t \in \mathbf{R}$.
6. Show that $\Phi(t)=\left(\begin{array}{cc}e^{t} & 2 \\ 1 & e^{-t}\end{array}\right)$ is a fundamental matrix for the homogeneous linear system $\dot{\mathbf{x}}(t)=A(t) \mathbf{x}(t)$, where $A(t)=\left(\begin{array}{cc}-1 & 2 e^{t} \\ -e^{-t} & 1\end{array}\right)$.
Use this to solve the inhomogeneous system $\dot{\mathbf{x}}(t)=A(t) \mathbf{x}(t)+\binom{e^{t / 2}}{0}$.

Solutions for TATA71 2024-03-14

1. The ODE can be written as $\frac{d(x / K)}{d(r t)}=\frac{x}{K}\left(1-\frac{x}{K}\right)$, so in terms of the dimensionless variables $y=x / K$ and $s=r t$, it becomes $d y / d s=y(1-y)$. Phase portrait:

2. The system matrix $A=\left(\begin{array}{ll}3 & -2 \\ 0 & -3\end{array}\right)$ obviously has the eigenvalues 3 and -3 , so the phase portrait is a saddle, with principal directions given by the corresponding eigenvectors $\binom{1}{0}$ and $\binom{1}{3}$. From this it follows that the general solution is

$$
\binom{x(t)}{y(t)}=C_{1} e^{3 t}\binom{1}{0}+C_{2} e^{-3 t}\binom{1}{3}
$$

where C_{1} and C_{2} are arbitrary real constants. (Alternative method: First find $y(t)$ from $\dot{y}=-3 y$ and then find $x(t)$ from $\dot{x}-3 x=y(t)$.)
Phase portrait, with the x-nullcline $3 x-2 y=0$ in red and the y-nullcline $y=0$ in orange, and the principal directions indicated by dashed purple lines:

3. The equilibrium points are easily found to be $(0,0)$ and $(1,1)$. Jacobian matrix:

$$
J(x, y)=\left(\begin{array}{cc}
y-1 & x \\
-3 x^{2} & 1
\end{array}\right), \quad J(0,0)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad J(1,1)=\left(\begin{array}{cc}
0 & 1 \\
-3 & 1
\end{array}\right) .
$$

Hence $(0,0)$ is a saddle point with principal directions given by the eigenvectors $\binom{1}{0}$ and $\binom{0}{1}$, while $(1,1)$ is an unstable focus (complex eigenvalues $\frac{1}{2}(1 \pm i \sqrt{11})$ with positive real part). Phase portrait, with x / y-nullclines in red/orange:

4. The function $V(x, y)=x^{2}+y^{2}$ is positive definite and satisfies $\dot{V}=2 x \dot{x}+$ $2 y \dot{y}=2 x\left(-y^{2}-x^{3}\right)+2 y \cdot x y=-2 x^{4} \leq 0$ for all $(x, y) \in \mathbf{R}^{2}$, so it's a weak Liapunov function on \mathbf{R}^{2}. The set where $\dot{V}=0$ is the line $x=0$, and on this set the ODEs become $(\dot{x}, \dot{y})=\left(-y^{2}, 0\right)$, so any trajectory passing through a point $(0, y) \neq(0,0)$ on this line is forced to immediately leave the line (towards the left). So the set where $\dot{V}=0$ contains no complete trajectory except for the equilibrium point itself, and hence the hypotheses for LaSalle's theorem are satisfied, showing that the origin is asymptotically stable. Moreover, since V is a Liapunov function on the whole space \mathbf{R}^{2} and satisfies the additional condition that $V(x, y) \rightarrow \infty$ as $\sqrt{x^{2}+y^{2}} \rightarrow \infty$, the origin is even globally asymptotically stable.
5. The eigenvalues of A are $-1 \pm 2 i=\alpha \pm \beta i$, where $\alpha=-1$ and $\beta=2$, and an eigenvector corresponding to $\alpha+\beta i=-1+2 i$ is $\binom{1+i}{1}=\mathbf{a}+\mathbf{b} i$ where $\mathbf{a}=\binom{1}{1}$ and $\mathbf{b}=\binom{1}{0}$. Taking \mathbf{b} and \mathbf{a} as the columns of a change-of-basis matrix M we get the Jordan normal form of A,

$$
J=M^{-1} A M=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & -4 \\
2 & -3
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & -2 \\
2 & -1
\end{array}\right)=\left(\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right)
$$

so that $A=M J M^{-1}$ and

$$
\begin{aligned}
\exp (A t) & =M \exp (J t) M^{-1} \\
& =\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) e^{\alpha t}\left(\begin{array}{cc}
\cos \beta t & -\sin \beta t \\
\sin \beta t & \cos \beta t
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \\
& =e^{-t}\left(\begin{array}{cc}
\cos 2 t+\sin 2 t & -2 \sin 2 t \\
\sin 2 t & \cos 2 t-\sin 2 t
\end{array}\right) .
\end{aligned}
$$

6. Calculation shows that $d \Phi / d t=A \Phi$ (both sides are equal to $\operatorname{diag}\left(e^{t},-e^{-t}\right)$), and that $\operatorname{det}(\Phi)=-1 \neq 0$. This means that Φ is a fundamental matrix for the system. We now use the method of variation of constants, setting $\mathbf{x}(t)=\Phi(t) \mathbf{y}(t)$. This gives

$$
\binom{e^{t / 2}}{0}=\dot{\mathbf{x}}-A \mathbf{x}=(\Phi \dot{\mathbf{y}}+\dot{\Phi} \mathbf{y})-A(\Phi \mathbf{x})=\Phi \dot{\mathbf{y}}+\underbrace{(\dot{\Phi}-A \Phi)}_{=0} \mathbf{x}=\Phi \dot{\mathbf{y}},
$$

so that

$$
\dot{\mathbf{y}}=\Phi^{-1}\binom{e^{t / 2}}{0}=\left(\begin{array}{cc}
-e^{-t} & 2 \\
1 & e^{t}
\end{array}\right)\binom{e^{t / 2}}{0}=\binom{-e^{-t / 2}}{e^{t / 2}}
$$

which after integration becomes

$$
\mathbf{y}=\binom{2 e^{-t / 2}+C_{1}}{2 e^{t / 2}+C_{2}}
$$

Plugging this back into the defining relation $\mathbf{x}=\Phi \mathbf{y}$, we get the answer:

$$
\mathbf{x}(t)=\left(\begin{array}{cc}
e^{t} & 2 \\
1 & e^{-t}
\end{array}\right)\binom{2 e^{-t / 2}+C_{1}}{2 e^{t / 2}+C_{2}}=\binom{6 e^{t / 2}}{4 e^{-t / 2}}+C_{1}\binom{e^{t}}{1}+C_{2}\binom{2}{e^{-t}} .
$$

