Hand-in Exercises TATA74 Curves 1

First of all the exercises are to be solved individually: it is your examination!

The exercises to be done by each of you are parametrised by $(M_1 - M_2, D_1 - D_2, Y_1 - Y_2)$, which are the moth, day and year of your birthday. Mine is (1-2, 1-5, 6-3). Some one born March 3 1990 has coordinates (0-3, 0-3, 9-0).

How to get the exercises to be solved by you?: If one Exercise contains exercises of different types, where the types are denoted by letters a, b, c and d parts you must solve one exercise from each of its parts.

When one Exercise contains more than one exercise of a given type (Exercises 4, 5, 6, 7 and 8) you solve the exercise of the type given by the number 1, 2 or 3 obtained as follows:

 $M_1 + M_2 + D_1 + D_2 + Y_1 + Y_2 +$ No. of the Exercise $+ l \mod 3$

where l = 1 for an exercise type **a**), and l = -1 for an exercise type **b**).

So I should solve exercises a.2 and b.3 in Exercise 4, and a.3 and b.1 in Exercise 5.

As for Exercise 1, each of you hast to solve 3 of the 10 exercises. In this case you must go to the LISAM-room of the course where all you 11 students are listed (in Members and Groups) where Student no. 1 is the one on top of the list and Student no. 11 is the one at the bottom. With that order you must do:

Student no.	exercise no.
Student no. 1	1, 4, 7
Student no. 2	1, 8, 9
Student no. 3	1, 3, 10
Student no. 4	2, 5, 6
Student no. 5	6, 4, 10
Student no. 6	2, 4, 8
Student no. 7	2, 5, 7
Student no. 8	3, 10, 7
Student no. 9	3, 6, 9
Student no. 10	1, 5, 9
10	

Student no. 11 5, 8, 10

Of course you may use your favourite program to do calculations: MATLAB, Maple, Mathematica, Alpha Wolfram, etc.

Exercises on Curves

Exercise 1 Calculate the curvature and torsion at a generic point of the parametrised curves as well as the length of the following arcs of plane curves:

- 1. Graph of the function $y = \frac{x^2}{4} \frac{\ln(x)}{2}$, with $x \in [1, 4]$.
- 2. $\gamma(t) = (8at^3, 3a(2t^2 t^4)), \text{ with } t \in [0, \sqrt{3}]. a \neq 0 \text{ a constant.}$
- 3. The plane curve $\gamma(\phi)$ defined by the polar equation $r(\phi) = 2a(\cos \phi + 1)$, $\phi \in [0, 2\pi]$. Remember if (r, ϕ) are the polar coordinates of a point on the plane, its Cartesian coordinates are $(x = r\cos(\phi), y = r\sin(\phi))$. This curve is called the cardioid.
- 4. The plane curve $\gamma(\phi)$ defined by the polar equation $r(\phi) = a \sin^3(\phi/3)$ with $\phi \in [0, 2\pi]$.
- 5. The graph of the function $y = \ln(\frac{e^x+1}{e^x-1}) \ x \in [t_0, t_1].$
- 6. $\gamma(t) = (t, t^2, t^3), t \in [-2, 2].$
- 7. $\gamma(t) = (a(t-\sin t), a(1-\cos t), bt), t \in [-5, 5], with a, b non-zero constants.$
- 8. $\gamma(t) = (a(t \sin t), a(1 \cos t), 4a\cos(t/2)), \text{ with } t \in [0, 2\pi] \text{ and } a \ge 0 \text{ a constant.}$
- 9. $\gamma(t) = ((\cos t)^3, (\sin t)^3, \cos(2t))$ for $t \in (0, \frac{\pi}{2})$.
- 10. $\gamma(t) = (\sqrt{3}t \sin t, 2\cos t, t + \sqrt{3}\sin t), t \in [-5, 5]$

Exercise 2 Determine the constants $a \neq 0$ and $b \neq 0$ such that the curvature and the torsion of the curve $\gamma(t) = (a\cosh(t), a\sinh(t), bt)$ coincide.

Exercise 3 a) Determine the point on the curve $y = 2^x$ with maximal curvature and calculate the curvature at this point.

b) Determine the points on the curve $\gamma(t) = (a(t-\sin t), a(1-\cos t), 4a\cos(t/2))$ with local minimal curvature radius and calculate the curvature at these.

Exercise 4 Consider the unit-speed curve $\gamma(s)$ with Frenet-trihedron t, n and b, curvature $\kappa \neq 0$ and torsion τ . Show that

a.1
$$\frac{[\mathbf{n},\mathbf{n}',\mathbf{n}'']}{|\mathbf{n}'|^2} = \frac{(\frac{\kappa}{\tau})'}{(\frac{\kappa}{\tau})^2+1}$$

a.2 $[\mathbf{b}', \mathbf{b}'', \mathbf{b}'''] = \tau^5(\frac{\kappa}{\tau})'$. Notation: $(\frac{\kappa}{\tau})'$ is the derivative of $(\frac{\kappa}{\tau})$.

- a.3 $[\mathbf{t}', \mathbf{t}'', \mathbf{t}'''] = \kappa^5(\frac{\tau}{\kappa})'$. Notation: $(\frac{\tau}{\kappa})'$ s the derivative of $\frac{\tau}{\kappa}$.
- b.1 Show that if $\hat{\kappa}$ and $\hat{\tau}$ are the curvature and torsion of the spherical curve $\hat{\gamma}(s) = \mathbf{t}(s)$ then

$$\widehat{\kappa} = \sqrt{1 + (\frac{\tau}{\kappa})^2} \quad \widehat{\tau} = \frac{(\frac{\tau}{\kappa})'}{\kappa 1 + (\frac{\tau}{\kappa})^2}$$

- b.2 Let $\gamma : I \to \mathbb{R}^3$ be a unit-speed curve with nowhere vanishing torsion τ . Consider the curve $\overline{\gamma} = \int_{s_0}^s \mathbf{b}(s) ds$, called the adjoint curve of γ . (**b** is the binormal vector to γ). Show that if γ has constant curvature (resp. torsion), then $\overline{\gamma}$ has constant torsion (resp. curvature).
- b.3 Let $\gamma : I \to \mathbb{R}^3$ be a unit-speed curve with nowhere vanishing constant torsion τ . Calculate the curvature of $\widehat{\gamma}(s) = \frac{-\mathbf{n}}{\tau} + \int_{s_0}^{s} \mathbf{b}(s) ds$.
- **Exercise 5** a.1 Determine the points on the curve $\gamma(t) = (3t-t^3, 3t^2, 3t+t^3), t \in \mathbb{R}$, with tangent line parallel to the plane with equation 3x+y+z+2=0.
 - a.2 Find the equation(s) of the tangent line(s) to the curve $\gamma(t) = (a(t \sin t), a(1 \cos t), 4a\sin(\frac{t}{2}))$, with a > 0 constant. Which is the angle between a generic tangent line and the axis Oz?
 - a.3 Let $\gamma(\phi)$ be a regular curve defined by the polar equation $r = r(\phi)$. Show that the angle μ formed by the tangent and radial vector to $\gamma(\phi)$ is determined by the equation $\tan \mu = \frac{r}{dr/d\phi}$. Calculate this angle μ for the cardoid given in Exercise 1.3.
 - b.1 Show that the curve defined by $x^2 = 3y$, 2xy = 9z is a helix and determine its axis.
 - b.2 Show that the curve $\mathbf{x}(t) = (\cos(t) + 2\sin(t) + 8t/3, 2\cos(t) + \sin(t) 8t/3, 2\cos(t) + 2\sin(t) 4t/3)$ is a helix and determine its axis.
 - b.3 Show that the curve $\mathbf{x}(t) = (2t, \ln(t), t^2), t \in \mathbb{R}^+$ is a helix and determine its axis.

Exercise 6 1. Determine a plane curve with $\overline{\kappa} = (1 + s^2)^{-1}$, s arc-length,

- 2. Determine a plane curve such that $s = a \tan \phi$, a constant, ϕ is the rotation angle of the tangent vector.
- 3. Determine a plane curve such that $\overline{\kappa} = (1+s^2)^{-1/2}$, s arc-length.
- **Exercise 7** 1. Let $\mathbf{F}: I \to \mathbb{R}^3$, $I = (-\pi, \pi)$ be defined by $\mathbf{F}(t) = (\sin t, \sin t \cos t, \cos^2 t)$. Determine the unitary tangent vector \mathbf{t} to a parametrization $\gamma: I \to \mathbb{R}^3$ whose torsion function τ is constant of value 2 and whose binormal vector $\mathbf{b}(t) = \mathbf{F}(t)$. (Observe that determines κ and $|\tau|$. Is this true?).
 - 2. Integrate the Frenet-Serret equations to show that, if the curvature and the torsion of a regular curve $\gamma(t)$ are $\kappa \neq 0$ and $\tau = 1/a$ (a a constant), then $\gamma(t) = a \int g(t) \times g'(t) dt$, where g(t) is a vectorial function satisfying that |g(t)| = 1 and $[g, g', g''] \neq 0$.
 - 3. Using Exercise 4.a.1 show that the normal vector **n** of a unit-speed curve without inflexion points determine the curvature and torsion of the curve.

Exercise 8 Consider the family of curves defined by F(x,y) = a. We will consider that $F_y = \frac{\partial F}{\partial y} \neq 0$

- a.1 Show that $\nabla F = (F_x, F_y)$ gives the normal direction to the curve.
- a.2 Show that the curves which are orthogonal to the curves in the family F(x,y) = a is are given by $\frac{dx}{F_x} = \frac{dy}{F_y}$.
- a.3 Determine the equation of the tangent line and the normal plane (plane parallel to $Sp\{\mathbf{n}, \mathbf{b}\}$) to the curve defined by the intersection of two surfaces: F(x, y, z) = 0, G(x, y, z) = 0, where $\nabla \Phi = (\Phi_x, \Phi_y, \Phi_z) = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})(\Phi)$, the gradient of Φ .

b) Which curve results of the intersection of $x^2 + y^2 - z^2 = 1$ and $x^2 - y^2 + z^2 = 1$?

b.1 Show that
$$\kappa = \frac{|\frac{d^2y}{dx^2}|}{(1+(\frac{dy}{dx})^2)^{3/2}}.$$

b.2 Show that
$$\kappa = \frac{|F_{xx}F_y^2 - 2F_{xy}F_xF_y + F_{yy}F_x^2|}{(F_x + F_y)^{3/2}}$$

b.3 Show that the inflexion points (a point $\gamma(t_0)$ is called an inflexion point of the curve if $\kappa(t_0) = 0$) of a curve in the family are determined by the equation $F_{xx}F_y^2 - 2F_{xy}F_xF_y + F_{yy}F_x^2 = 0$, where F_u is the derivative of Fwith respect to the variable u and F_{uv} is the second derivative of F with respect to the variables u, v.

Exercise 9 Determine the quadratic Bézier curve $B(t), 0 \leq t \leq 1$ joining $A(M_1.M_2, D_1.D_2)$ and $B(1.9, Y_1.Y_2)$ with horizontal tangent at A = B(0) and vertical tangent at B = B(1). $(M_1 - M_2, D_1 - D_2, Y_1 - Y_2)$ are the moth, day and year of your birthday. Mine is (1-2, 1-5, 6-3). Some one born March 3 1990 has coordinates (0-3, 0-3, 9-0).

Exercise 10 A cubic Bézier curve B(t) is given by the control points $\mathbf{b}_0 = (0.2, D_1 D_2. D_1 D_2)$, $\mathbf{b}_1 = (1.0, 0.4)$, $\mathbf{b}_2 = (1.8, 1.2)$ and $\mathbf{b}_3 = (3.4, Y_1. Y_2)$.

a) Give the parametric expression of the curve.

b) Calculate the curvature.

c) Determine the Bézier curve obtained by reflecting the curve in Exercise 9 in the straight ine x + y = 0.

Exercise 11 Use the de Casteljau algorithm on the curve in the previous exercise to calculate $B(0.M_2M_1)$.

Exercise 12 a) Consider the curve $\mathbf{x} = (a \cos t, a \sin t, f(t)), f(t)$ a smooth real function. Determine the condition satisfied by f such that the curve \mathbf{x} becomes a plane curve.

b) Is there a plane simple closed curve with length 6 meters and bounding an area of 3 square meters?

c) Let $\mathbf{x}(s)$, $s \in [0, l]$, be a plane simple closed curve such that its curvature satisfies $0 < \kappa(s) \le c$, with c a constant. Prove that $l \ge \frac{2\pi}{c}$. d) Let $\mathbf{x}(s)$ be a plane closed curve with rotation index I such that its curvature satisfies $0 < \kappa(s) \le c$, with c a constant. Prove that $l \ge \frac{2\pi I}{c}$, where l is the length of $\mathbf{x}(s)$.