Hand-in Exercises TATA74 Curves 1

First of all the exercises are to be solved individually: it is your examination!

The exercises to be done by each of you are parametrised by $\left(M_{1}-M_{2}, D_{1}-\right.$ $D_{2}, Y_{1}-Y_{2}$), which are the moth, day and year of your birthday. Mine is (1-2, 1-5, 6-3). Some one born March 31990 has coordinates (0-3, 0-3, 9-0).

How to get the exercises to be solved by you?: If one Exercise contains exercises of different types, where the types are denoted by letters a, b, c and d parts you must solve one exercise from each of its parts.

When one Exercise contains more than one exercise of a given type (Exercises $4,5,6,7$ and 8$)$ you solve the exercise of the type given by the number 1,2 or 3 obtained as follows:

$$
M_{1}+M_{2}+D_{1}+D_{2}+Y_{1}+Y_{2}+\text { No. of the Exercise }+l \bmod 3
$$

where $l=1$ for an exercise type \mathbf{a}), and $l=-1$ for an exercise type \mathbf{b}).
So I should solve exercises $a .2$ and $b .3$ in Exercise 4, and $a .3$ and $b .1$ in Exercise 5.

As for Exercise 1, each of you hast to solve 3 of the 10 exercises. In this case you must go to the LISAM-room of the course where all you 11 students are listed (in Members and Groups) where Student no. 1 is the one on top of the list and Student no. 11 is the one at the bottom. With that order you must do:

Student no.	exercise no.
Student no. 1	$1,4,7$
Student no. 2	$1,8,9$
Student no. 3	$1,3,10$
Student no. 4	$2,5,6$
Student no. 5	$6,4,10$
Student no. 6	$2,4,8$
Student no. 7	$2,5,7$
Student no. 8	$3,10,7$
Student no. 9	$3,6,9$
Student no. 10	$1,5,9$

Student no. $11 \quad 5,8,10$
Of course you may use your favourite program to do calculations: MATLAB, Maple, Mathematica, Alpha Wolfram, etc.

Exercises on Curves

Exercise 1 Calculate the curvature and torsion at a generic point of the parametrised curves as well as the length of the following arcs of plane curves:

1. Graph of the function $y=\frac{x^{2}}{4}-\frac{\ln (x)}{2}$, with $x \in[1,4]$.
2. $\gamma(t)=\left(8 a t^{3}, 3 a\left(2 t^{2}-t^{4}\right)\right)$, with $t \in[0, \sqrt{3}] . a \neq 0$ a constant.
3. The plane curve $\gamma(\phi)$ defined by the polar equation $r(\phi)=2 a(\cos \phi+1)$, $\phi \in[0,2 \pi]$. Remember if (r, ϕ) are the polar coordinates of a point on the plane, its Cartesian coordinates are $(x=r \cos (\phi), y=r \sin (\phi))$. This curve is called the cardioid.
4. The plane curve $\gamma(\phi)$ defined by the polar equation $r(\phi)=a \sin ^{3}(\phi / 3)$ with $\phi \in[0,2 \pi]$.
5. The graph of the function $y=\ln \left(\frac{e^{x}+1}{e^{x}-1}\right) x \in\left[t_{0}, t_{1}\right]$.
6. $\gamma(t)=\left(t, t^{2}, t^{3}\right), t \in[-2,2]$.
7. $\gamma(t)=(a(t-\sin t), a(1-\cos t), b t), t \in[-5,5]$, with a, b non-zero constants.
8. $\gamma(t)=(a(t-\sin t), a(1-\cos t), 4 a \cos (t / 2))$, with $t \in[0,2 \pi]$ and $a \gtrless 0 a$ constant.
9. $\gamma(t)=\left((\cos t)^{3},(\sin t)^{3}, \cos (2 t)\right)$ for $t \in\left(0, \frac{\pi}{2}\right)$.
10. $\gamma(t)=(\sqrt{3} t-\sin t, 2 \cos t, t+\sqrt{3} \sin t), t \in[-5,5]$

Exercise 2 Determine the constants $a \neq 0$ and $b \neq 0$ such that the curvature and the torsion of the curve $\gamma(t)=(a \cosh (t), a \sinh (t), b t)$ coincide.

Exercise 3 a) Determine the point on the curve $y=2^{x}$ with maximal curvature and calculate the curvature at this point.
b) Determine the points on the curve $\gamma(t)=(a(t-\sin t), a(1-\cos t), 4 a \cos (t / 2))$ with local minimal curvature radius and calculate the curvature at these.

Exercise 4 Consider the unit-speed curve $\gamma(s)$ with Frenet-trihedron \boldsymbol{t}, \boldsymbol{n} and b, curvature $\kappa \neq 0$ and torsion τ. Show that
$a .1 \frac{\left[\mathbf{n}, \mathbf{n}^{\prime}, \mathbf{n}^{\prime \prime}\right]}{\left|\mathbf{n}^{\prime}\right|^{2}}=\frac{\left(\frac{\kappa}{\tau}\right)^{\prime}}{\left(\frac{\kappa}{\tau}\right)^{2}+1}$
a.2 $\left[\mathbf{b}^{\prime}, \mathbf{b}^{\prime \prime}, \mathbf{b}^{\prime \prime \prime}\right]=\tau^{5}\left(\frac{\kappa}{\tau}\right)^{\prime}$. Notation: $\left(\frac{\kappa}{\tau}\right)^{\prime}$ is the derivative of $\left(\frac{\kappa}{\tau}\right)$.
a.3 $\left[\mathbf{t}^{\prime}, \mathbf{t}^{\prime \prime}, \mathbf{t}^{\prime \prime \prime}\right]=\kappa^{5}\left(\frac{\tau}{\kappa}\right)^{\prime}$. Notation: $\left(\frac{\tau}{\kappa}\right)^{\prime}$ s the derivative of $\frac{\tau}{\kappa}$.
b. 1 Show that if $\widehat{\kappa}$ and $\widehat{\tau}$ are the curvature and torsion of the spherical curve $\widehat{\gamma}(s)=\mathbf{t}(s)$ then

$$
\widehat{\kappa}=\sqrt{1+\left(\frac{\tau}{\kappa}\right)^{2}} \quad \widehat{\tau}=\frac{\left(\frac{\tau}{\kappa}\right)^{\prime}}{\kappa 1+\left(\frac{\tau}{\kappa}\right)^{2}}
$$

b.2 Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a unit-speed curve with nowhere vanishing torsion τ. Consider the curve $\bar{\gamma}=\int_{s_{0}}^{s} \mathbf{b}(s) d s$, called the adjoint curve of γ. (\mathbf{b} is the binormal vector to γ). Show that if γ has constant curvature (resp. torsion), then $\bar{\gamma}$ has constant torsion (resp. curvature).
b.3 Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a unit-speed curve with nowhere vanishing constant torsion τ. Calculate the curvature of $\widehat{\gamma}(s)=\frac{-\mathbf{n}}{\tau}+\int_{s_{0}}^{s} \mathbf{b}(s) d s$.

Exercise 5 a.1 Determine the points on the curve $\gamma(t)=\left(3 t-t^{3}, 3 t^{2}, 3 t+t^{3}\right)$, $t \in \mathbb{R}$, with tangent line parallel to the plane with equation $3 x+y+z+2=0$.
a. 2 Find the equation(s) of the tangent line(s) to the curve $\gamma(t)=(a(t-$ $\left.\sin t), a(1-\cos t), 4 a \sin \left(\frac{t}{2}\right)\right)$, with $a>0$ constant. Which is the angle between a generic tangent line and the axis $O z$?
a.3 Let $\gamma(\phi)$ be a regular curve defined by the polar equation $r=r(\phi)$. Show that the angle μ formed by the tangent and radial vector to $\gamma(\phi)$ is determined by the equation $\tan \mu=\frac{r}{d r / d \phi}$. Calculate this angle μ for the cardoid given in Exercise 1.3.
b. 1 Show that the curve defined by $x^{2}=3 y, 2 x y=9 z$ is a helix and determine its axis.
b.2 Show that the curve $\mathbf{x}(t)=(\cos (t)+2 \sin (t)+8 t / 3,2 \cos (t)+\sin (t)-$ $8 t / 3,2 \cos (t)+2 \sin (t)-4 t / 3)$ is a helix and determine its axis.
b.3 Show that the curve $\mathbf{x}(t)=\left(2 t, \ln (t), t^{2}\right), t \in \mathbb{R}^{+}$is a helix and determine its axis.

Exercise 6 1. Determine a plane curve with $\bar{\kappa}=\left(1+s^{2}\right)^{-1}$, s arc-length,
2. Determine a plane curve such that $s=a \tan \phi$, a constant, ϕ is the rotation angle of the tangent vector.
3. Determine a plane curve such that $\bar{\kappa}=\left(1+s^{2}\right)^{-1 / 2}$, s arc-length.

Exercise 7 1. Let $\mathbf{F}: I \rightarrow \mathbb{R}^{3}, I=(-\pi, \pi)$ be defined by $\mathbf{F}(t)=\left(\sin t, \sin t \cos t, \cos ^{2} t\right)$. Determine the unitary tangent vector \mathbf{t} to a parametrization $\gamma: I \rightarrow \mathbb{R}^{3}$ whose torsion function τ is constant of value 2 and whose binormal vector $\mathbf{b}(t)=\mathbf{F}(t)$. (Observe that determines κ and $|\tau|$. Is this true?).
2. Integrate the Frenet-Serret equations to show that, if the curvature and the torsion of a regular curve $\gamma(t)$ are $\kappa \neq 0$ and $\tau=1 /$ a (a a constant), then $\gamma(t)=a \int g(t) \times g^{\prime}(t) d t$, where $g(t)$ is a vectorial function satisfying that $|g(t)|=1$ and $\left[g, g^{\prime}, g^{\prime \prime}\right] \neq 0$.
3. Using Exercise 4.a.1 show that the normal vector \mathbf{n} of a unit-speed curve without inflexion points determine the curvature and torsion of the curve.

Exercise 8 Consider the family of curves defined by $F(x, y)=a$. We will consider that $F_{y}=\frac{\partial F}{\partial y} \neq 0$
a. 1 Show that $\nabla F=\left(F_{x}, F_{y}\right)$ gives the normal direction to the curve.
a. 2 Show that the curves which are orthogonal to the curves in the family $F(x, y)=a$ is are given by $\frac{d x}{F_{x}}=\frac{d y}{F_{y}}$.
a. 3 Determine the equation of the tangent line and the normal plane (plane parallel to $\operatorname{Sp}\{\mathbf{n}, \mathbf{b}\})$ to the curve defined by the intecsection of two surfaces: $F(x, y, z)=0, G(x, y, z)=0$, where $\nabla \Phi=\left(\Phi_{x}, \Phi_{y}, \Phi_{z}\right)=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)(\Phi)$, the gradient of Φ.
b) Which curve results of the intersection of $x^{2}+y^{2}-z^{2}=1$ and $x^{2}-$ $y^{2}+z^{2}=1$?
b. 1 Show that $\kappa=\frac{\left|\frac{d^{2} y}{d x^{2}}\right|}{\left(1+\left(\frac{d y}{d x}\right)^{2}\right)^{3 / 2}}$.
b.2 Show that $\kappa=\frac{\left|F_{x x} F_{y}^{2}-2 F_{x y} F_{x} F_{y}+F_{y y} F_{x}^{2}\right|}{\left(F_{x}+F_{y}\right)^{3 / 2}}$.
b.3 Show that the inflexion points (a point $\gamma\left(t_{0}\right)$ is called an inflexion point of the curve if $\kappa\left(t_{0}\right)=0$) of a curve in the family are determined by the equation $F_{x x} F_{y}^{2}-2 F_{x y} F_{x} F_{y}+F_{y y} F_{x}^{2}=0$, where F_{u} is the derivative of F with respect to the variable u and $F_{u v}$ is the second derivative of F with respect to the variables u, v.

Exercise 9 Determine the quadratic Bézier curve $B(t), 0 \leq t \leq 1$ joining $A\left(M_{1} . M_{2}, D_{1} . D_{2}\right)$ and $B\left(1.9, Y_{1} . Y_{2}\right)$ with horizontal tangent at $A=B(0)$ and vertical tangent at $B=B(1) .\left(M_{1}-M_{2}, D_{1}-D_{2}, Y_{1}-Y_{2}\right)$ are the moth, day and year of your birthday. Mine is (1-2, 1-5, 6-3). Some one born March 3 1990 has coordinates (0-3, 0-3, 9-0).

Exercise $10 A$ cubic Bézier curve $B(t)$ is given by the control points $\mathbf{b}_{0}=$ $\left(0.2, D_{1} D_{2} . D_{1} D_{2}\right), \mathbf{b}_{1}=(1.0,0.4), \mathbf{b}_{2}=(1.8,1.2)$ and $\mathbf{b}_{3}=\left(3.4, Y_{1} . Y_{2}\right)$.
a) Give the parametric expression of the curve.
b) Calculate the curvature.
c) Determine the Bézier curve obtained by reflecting the curve in Exercise 9 in the straight ine $x+y=0$.

Exercise 11 Use the de Casteljau algorithm on the curve in the previous exercise to calculate $B\left(0 . M_{2} M_{1}\right)$.

Exercise 12 a) Consider the curve $\mathbf{x}=(a \cos t, a \sin t, f(t)), f(t) a$ smooth real function. Determine the condition satisfied by f such that the curve \mathbf{x} becomes a plane curve.
b) Is there a plane simple closed curve with length 6 meters and bounding an area of 3 square meters?
c) Let $\mathbf{x}(s), s \in[0, l]$, be a plane simple closed curve such that its curvature satisfies $0<\kappa(s) \leq c$, with c a constant. Prove that $l \geq \frac{2 \pi}{c}$.
d) Let $\mathbf{x}(s)$ be a plane closed curve with rotation index I such that its curvature satisfies $0<\kappa(s) \leq c$, with c a constant. Prove that $l \geq \frac{2 \pi I}{c}$, where l is the length of $\mathbf{x}(s)$.

