Hand-in Exercises TATA74 1 Fall 2023: Curves

First of all the exercises are to be solved individually: it is your examination!

The exercises to be done by each of you are parametrised by $(M_1 - M_2, D_1 - D_2, Y_1 - Y_2)$, which are the moth, day and year of your birthday, but if someone is born year 2000, for this course the student is born 1998. Mine is (1-2, 1-5, 6-3). Some one born March 3 1990 has coordinates (0-3, 0-3, 9-0).

How to get the exercises to be solved by you?: If one Exercise contains exercises of different types, where the types are denoted by letters a, b, c and d parts you must solve one exercise from each of its parts.

When one Exercise contains more than one exercise of a given type (Exercises 1, 2, 5, 6, 7 and 8) you solve the exercise of the type given by the number 1, 2 or 3 obtained as follows:

 $M_1 + M_2 + D_1 + D_2 + Y_1 + Y_2 +$ No. of the Exercise $+ l \mod 3$

where l = 1 for an exercise type **a**), l = -1 for an exercise type **b**), and l = 0 for type **c**).

So I should solve exercises a.3 and b.1 in Exercise 2, and 1 and 2 in Exercise 6.

Of course you may use your favourite program to do calculations: MATLAB, Maple, Mathematica, Alpha Wolfram, etc.

Exercise 1 Calculate the curvature and torsion at a generic point of the parametrised curves as well as the length of the following arcs of curves (for plane curves the curvature is signed):

- a.1 Graph of the function $y = \frac{x}{(1+e^{1/x})}$, with x > 0.
- a.2 $\gamma(t) = (a + R \frac{1-t^4}{1+t^2}, b + R \frac{2t}{1+t^2})$, with $t \in [0, 1]$. $a, b, R \neq 0$ constants.
- a.3 The graph of the function $y = \ln(\frac{1}{\cos(x)}) \ x \in [-\pi/3, \pi/3].$
- b.1 The plane curve $\gamma(\phi)$ defined by the polar equation $r(\phi) = 2a(\cos \phi + 1)$, $\phi \in [0, 2\pi]$. Remember if (r, ϕ) are the polar coordinates of a point on the plane, its Cartesian coordinates are $(x = r\cos(\phi), y = r\sin(\phi))$. This curve is called the cardioid.
- b.2 The plane curve $\gamma(\phi)$ defined by the polar equation $r(\phi) = a \sin^3(\phi/3)$ with $\phi \in [0, 2\pi]$.
- b.3 The plane curve $\gamma(\phi)$ defined by the polar equation $r(\phi) = a \sin^4(\phi/4)$ with $\phi \in [0, 2\pi]$.
- c.1 $\gamma(t) = (e^t \cos(t), e^t \sin(t), 2t), t \in [-\pi, \pi].$

- c.2 $\gamma(t) = (e^t, e^{-t}, \sqrt{2t}), t \in [0, 3].$
- c.3 $\gamma(t) = (a(t \sin t), a(1 \cos t), 4a\cos(t/2)), \text{ with } t \in [0, 2\pi] \text{ and } a \ge 0 \text{ a constant.}$

$$d \ \gamma(t) = (\sqrt{3}t - \sin t, 2\cos t, t + \sqrt{3}\sin t), \ t \in [-5, 5]$$

Exercise 2 Consider the unit-speed curve $\gamma(s)$ with Frenet-trihedron t, n and b, curvature $\kappa \neq 0$ and torsion τ . Show that

- a.1 $\frac{[\mathbf{n},\mathbf{n}',\mathbf{n}'']}{|\mathbf{n}'|^2} = \frac{(\frac{\kappa}{\tau})'}{(\frac{\kappa}{\tau})^2 + 1}$
- a.2 $[\mathbf{b}', \mathbf{b}'', \mathbf{b}'''] = \tau^5(\frac{\kappa}{\tau})'$. Notation: $(\frac{\kappa}{\tau})'$ is the derivative of $(\frac{\kappa}{\tau})$.
- a.3 $[\mathbf{t}', \mathbf{t}'', \mathbf{t}'''] = \kappa^5(\frac{\tau}{\kappa})'$. Notation: $(\frac{\tau}{\kappa})'$ s the derivative of $\frac{\tau}{\kappa}$.
- b.1 Show that if $\hat{\kappa}$ and $\hat{\tau}$ are the curvature and torsion of the spherical curve $\hat{\gamma}(s) = \mathbf{t}(s)$ then

$$\widehat{\kappa} = \sqrt{1 + (\frac{\tau}{\kappa})^2} \quad \widehat{\tau} = \frac{(\frac{\tau}{\kappa})'}{\kappa (1 + (\frac{\tau}{\kappa})^2)}$$

- b.2 Let $\gamma : I \to \mathbb{R}^3$ be a unit-speed curve with nowhere vanishing torsion τ . Consider the curve $\overline{\gamma} = \int_{s_0}^s \mathbf{b}(s) ds$, called the adjoint curve of γ . (**b** is the binormal vector to γ). Show that if γ has constant curvature (resp. torsion), then $\overline{\gamma}$ has constant torsion (resp. curvature).
- b.3 Let $\gamma : I \to \mathbb{R}^3$ be a unit-speed curve with nowhere vanishing constant torsion τ . Calculate the curvature of $\widehat{\gamma}(s) = \frac{-\mathbf{n}}{\tau} + \int_{s_0}^{s} \mathbf{b}(s) ds$.

Exercise 3 Show that the curve $\gamma(t) = (ae^t \cos(t), ae^t \sin(t), be^t)$ lies on the cone with equation $x^2 + y^2 = a^2 z^2/b^2$ with axis the vertical axis. Show that curvature radius at $\gamma(t)$ is proportional to the distance from the point $\gamma(t)$ to the axis of the cone.

Exercise 4 Show that a curve $\gamma(s)$ is a helix iff the normal lines to $\gamma(s)$ are orthogonal to a fixed direction **u**.

- **Exercise 5** a.1 Determine the points, with the same parameter x, on the curves $y = x^2$ and $y = x^4$ with parallel tangent lines..
 - a.2 Determine the points on $\gamma(t) = (2/t, \ln(t), -t^2), t > 0$, such that the binormal line to the curve at $\gamma(t)$ is parallel to the plane x y + 8z + 2 = 0
 - a.3 Let $\gamma(t) = (a(t \sin t), a(1 \cos t), 4a \sin(t/2))$, where a > 0 a constant. Consider the curve $\beta(t) = \gamma(t) + a\sqrt{1 + \sin^2(t/2)} \mathbf{n}(t)$ with \mathbf{n} the normal vector to $\gamma(t)$. Show that this curve is a sinusoide, i.e. the graph of a sine wave.

- b.1 Show that the curve with parametrisation $\gamma(t) = (\sin(2t), 1-\cos(2t), 2\cos(t)), -\pi < t < \pi$ is a spherical curve. Which are the centre and the rdius of the sphere supporting $\gamma(t)$?
- b.2 Show that the curve $\gamma(t)$ with parametrisation $(16\cos(t)/9 32\sin(t)/9 t/3, 16\cos(t)/9 + 4\sin(t)/9 + 8t/3, 28\cos(t)/9 + 16\sin(t)/9 4t/3)$ is a helix and determine its axis.
- b.3 Let $\gamma(s)$ be a circular helix. Consider $\beta(s) = \gamma(s) + \mathbf{b}(s)$. Show that $\beta(s)$ is a helix. Notice that s is not the arc-length of $\beta(s)$
- **Exercise 6** a.1 Determine a plane curve with $\overline{\kappa} = (1 + s^2)^{-1}$, s arc-length,
 - a.2 Determine a plane curve such that $s = a \tan \phi$, a constant, ϕ is the rotation angle of the tangent vector.
 - a.3 Determine a plane curve such that $\overline{\kappa} = (1 + s^2)^{-1/2}$, s arc-length.
- **Exercise 7** b.1 Let $\mathbf{F} : I \to \mathbb{R}^3$, $I = (-\pi, \pi)$ be defined by $\mathbf{F}(t) = (\sin t, \sin t \cos t, \cos^2 t)$. Determine the unitary tangent vector \mathbf{t} to a parametrization $\gamma : I \to \mathbb{R}^3$ whose torsion function τ is constant of value 2 and whose binormal vector $\mathbf{b}(t) = \mathbf{F}(t)$. (Observe that determines κ and $|\tau|$. Is this true?).
 - b.2 Integrate the Frenet-Serret equations to show that, if the curvature and the torsion of a regular curve $\gamma(t)$ are $\kappa \neq 0$ and $\tau = 1/a$ (a a constant), then $\gamma(t) = a \int g(t) \times g'(t) dt$, where g(t) is a vectorial function satisfying that |g(t)| = 1 and $[g, g', g''] \neq 0$.
 - b.3 Using Exercise 2.a.1 show that the normal vector **n** of a unit-speed curve without inflexion points determine the curvature and torsion of the curve.

Exercise 8 Consider the family of curves defined by F(x,y) = a. We will consider that $F_y = \frac{\partial F}{\partial y} \neq 0$

- a.1 Consider the family of curves given by G(x, y) = b (again $G_y = \frac{\partial G}{\partial y} \neq 0$). Show that if the condition $\frac{\partial F}{\partial x} \frac{\partial G}{\partial x} + \frac{\partial F}{\partial y} \frac{\partial G}{\partial y} = 0$ is satisfied, then each curve in the first family is orthogonal to each curve of the second family at the intersection point.
- a.2 Give the differential equation for the family of curves formed by those curves that intersect to each curve in the family F(x,y) = a orthogonally.
- a.3 Determine the family of lines orthogonal to the circles tangent to the x_1 -axis at the origin O.

For the Exercises type b the curves are plane ones.

b.1 Show that
$$\kappa = \frac{\left|\frac{d^2y}{dx^2}\right|}{(1+\left(\frac{dy}{dx}\right)^2)^{3/2}}$$
, for a curve $y = y(x)$.

b.2 Show that $\kappa = \frac{|F_{xx}F_y^2 - 2F_{xy}F_xF_y + F_{yy}F_x^2|}{(F_x + F_y)^{3/2}}$. Give the equation for the inflexion points

$$b.3 \ \kappa = \frac{r^2 + 2(\frac{dr}{d\varphi})^2 - r\frac{d^2r}{d\varphi^2}}{(r^2 + (\frac{dr}{d\varphi})^2)^{3/2}}, \text{ for a curve in polar form } r = r(\varphi).$$

Exercise 9 Determine the quadratic Bézier curve $B(t), 0 \le t \le 1$ joining $A(M_1.M_2, D_1.D_2)$ and $B(1.9, Y_1.Y_2)$ with tangent at A = B(0) making a $\frac{\pi}{4}$ -angle with the x_1 -axis and horizontal tangent at B = B(1).

Exercise 10 A cubic Bézier curve B(t) is given by the control points $\mathbf{b}_0 = (0.2, D_1 D_2. D_1 D_2)$, $\mathbf{b}_1 = (1.0, 0.4)$, $\mathbf{b}_2 = (1.8, 1.2)$ and $\mathbf{b}_3 = (3.4, Y_1. Y_2)$.

- a) Give the parametric expression of the curve.
- **b**) Calculate the curvature.

c) Determine the Bézier curve obtained by rotating the curve an angle $\frac{\pi}{4}$ with centre the origin in \mathbb{R}^2 .

Exercise 11 Use the de Casteljau algorithm on the curve B(t) in the previous exercise to subdivide the curve in two Bézier curves that meet at the point with parameter $B(0.5Y_2)$.

Exercise 12 a) Show that the equations for the envelope of the uniparametric family of plane curves given by F(x, y, a, b) = 0, where the parameters a, b satisfy the condition $\varphi(a, b) = 0$ are

$$F(x,y,a,b) = 0, \quad \varphi(a,b) = 0, \quad det(\frac{\partial(F,\varphi)}{\partial(a,b)}) = 0$$

 $(\frac{\partial(F,\varphi)}{\partial(a,b)}$ is the Jacobian of the function $(F(\cdot,\cdot,a,b),\varphi(a,b)))$

b) We know that the envelope of the family of straight lines ax + y + b = 0 is the circle with equation $x^2 + y^2 = c^2$, with a, b parameters and c a constant. Give the condition satisfied by a and b (the function $\varphi(a, b) = 0$).

c) Let $\mathbf{x}(s)$, $s \in [0, l]$, be a plane simple closed curve such that its curvature satisfies $0 < \kappa(s) \le c$, with c a constant. Prove that $l \ge \frac{2\pi}{c}$.

d) Let $\mathbf{x}(s)$ be a plane closed curve with rotation index I such that its curvature satisfies $0 < \kappa(s) \leq c$, with c a constant. Prove that $l \geq \frac{2\pi I}{c}$, where l is the length of $\mathbf{x}(s)$.