Hand-in Exercises TATA74 1 Fall 2023: Curves

First of all the exercises are to be solved individually: it is your examination!

The exercises to be done by each of you are parametrised by $\left(M_{1}-M_{2}, D_{1}-\right.$ $D_{2}, Y_{1}-Y_{2}$), which are the moth, day and year of your birthday, but if someone is born year 2000, for this course the student is born 1998. Mine is (1-2, 1-5, 6-3). Some one born March 31990 has coordinates (0-3, 0-3, 9-0).

How to get the exercises to be solved by you?: If one Exercise contains exercises of different types, where the types are denoted by letters a, b, c and d parts you must solve one exercise from each of its parts.

When one Exercise contains more than one exercise of a given type (Exercises $1,2,5,6,7$ and 8$)$ you solve the exercise of the type given by the number 1,2 or 3 obtained as follows:

$$
M_{1}+M_{2}+D_{1}+D_{2}+Y_{1}+Y_{2}+\text { No. of the Exercise }+l \bmod 3
$$

where $l=1$ for an exercise type \mathbf{a}), $l=-1$ for an exercise type \mathbf{b}), and $l=0$ for type \mathbf{c}).

So I should solve exercises $a .3$ and $b .1$ in Exercise 2, and 1 and 2 in Exercise 6.

Of course you may use your favourite program to do calculations: MATLAB, Maple, Mathematica, Alpha Wolfram, etc.

Exercise 1 Calculate the curvature and torsion at a generic point of the parametrised curves as well as the length of the following arcs of curves (for plane curves the curvature is signed):
a. 1 Graph of the function $y=\frac{x}{\left(1+e^{1 / x}\right)}$, with $x>0$.
a.2 $\gamma(t)=\left(a+R \frac{1-t^{4}}{1+t^{2}}, b+R \frac{2 t}{1+t^{2}}\right)$, with $t \in[0,1]$. $a, b, R \neq 0$ constants.
a. 3 The graph of the function $y=\ln \left(\frac{1}{\cos (x)}\right) x \in[-\pi / 3, \pi / 3]$.
b. 1 The plane curve $\gamma(\phi)$ defined by the polar equation $r(\phi)=2 a(\cos \phi+1)$, $\phi \in[0,2 \pi]$. Remember if (r, ϕ) are the polar coordinates of a point on the plane, its Cartesian coordinates are $(x=r \cos (\phi), y=r \sin (\phi))$. This curve is called the cardioid.
b. 2 The plane curve $\gamma(\phi)$ defined by the polar equation $r(\phi)=a \sin ^{3}(\phi / 3)$ with $\phi \in[0,2 \pi]$.
b.3 The plane curve $\gamma(\phi)$ defined by the polar equation $r(\phi)=a \sin ^{4}(\phi / 4)$ with $\phi \in[0,2 \pi]$.
c. $1 \gamma(t)=\left(e^{t} \cos (t), e^{t} \sin (t), 2 t\right), t \in[-\pi, \pi]$.

$$
c .2 \gamma(t)=\left(e^{t}, e^{-t}, \sqrt{2 t}\right), t \in[0,3] .
$$

c. $3 \gamma(t)=(a(t-\sin t), a(1-\cos t), 4 a \cos (t / 2))$, with $t \in[0,2 \pi]$ and $a \neq 0 a$ constant.

$$
d \gamma(t)=(\sqrt{3} t-\sin t, 2 \cos t, t+\sqrt{3} \sin t), t \in[-5,5]
$$

Exercise 2 Consider the unit-speed curve $\gamma(s)$ with Frenet-trihedron \boldsymbol{t}, \boldsymbol{n} and \boldsymbol{b}, curvature $\kappa \neq 0$ and torsion τ. Show that
$a .1 \frac{\left[\mathbf{n}, \mathbf{n}^{\prime}, \mathbf{n}^{\prime \prime}\right]}{\left|\mathbf{n}^{\prime}\right|^{2}}=\frac{\left(\frac{\kappa}{\tau}\right)^{\prime}}{\left(\frac{\kappa}{\tau}\right)^{2}+1}$
a.2 $\left[\mathbf{b}^{\prime}, \mathbf{b}^{\prime \prime}, \mathbf{b}^{\prime \prime \prime}\right]=\tau^{5}\left(\frac{\kappa}{\tau}\right)^{\prime}$. Notation: $\left(\frac{\kappa}{\tau}\right)^{\prime}$ is the derivative of $\left(\frac{\kappa}{\tau}\right)$.
a.3 $\left[\mathbf{t}^{\prime}, \mathbf{t}^{\prime \prime}, \mathbf{t}^{\prime \prime \prime}\right]=\kappa^{5}\left(\frac{\tau}{\kappa}\right)^{\prime}$. Notation: $\left(\frac{\tau}{\kappa}\right)^{\prime}$ s the derivative of $\frac{\tau}{\kappa}$.
b. 1 Show that if $\widehat{\kappa}$ and $\widehat{\tau}$ are the curvature and torsion of the spherical curve $\widehat{\gamma}(s)=\mathbf{t}(s)$ then

$$
\widehat{\kappa}=\sqrt{1+\left(\frac{\tau}{\kappa}\right)^{2}} \quad \widehat{\tau}=\frac{\left(\frac{\tau}{\kappa}\right)^{\prime}}{\kappa\left(1+\left(\frac{\tau}{\kappa}\right)^{2}\right)}
$$

b.2 Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a unit-speed curve with nowhere vanishing torsion τ. Consider the curve $\bar{\gamma}=\int_{s_{0}}^{s} \mathbf{b}(s) d s$, called the adjoint curve of γ. (\mathbf{b} is the binormal vector to γ). Show that if γ has constant curvature (resp. torsion), then $\bar{\gamma}$ has constant torsion (resp. curvature).
b.3 Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a unit-speed curve with nowhere vanishing constant torsion τ. Calculate the curvature of $\widehat{\gamma}(s)=\frac{-\mathbf{n}}{\tau}+\int_{s_{0}}^{s} \mathbf{b}(s) d s$.

Exercise 3 Show that the curve $\gamma(t)=\left(a e^{t} \cos (t), a e^{t} \sin (t)\right.$, be $\left.{ }^{t}\right)$ lies on the cone with equation $x^{2}+y^{2}=a^{2} z^{2} / b^{2}$ with axis the vertical axis. Show that curvature radius at $\gamma(t)$ is proportional to the distance from the point $\gamma(t)$ to the axis of the cone.

Exercise 4 Show that a curve $\gamma(s)$ is a helix iff the normal lines to $\gamma(s)$ are orthogonal to a fixed direction \mathbf{u}.

Exercise 5 a.1 Determine the points, with the same parameter x, on the curves $y=x^{2}$ and $y=x^{4}$ with parallel tangent lines..
a. 2 Determine the points on $\gamma(t)=\left(2 / t, \ln (t),-t^{2}\right), t>0$, such that the binormal line to the curve at $\gamma(t)$ is parallel to the plane $x-y+8 z+2=0$
a.3 Let $\gamma(t)=(a(t-\sin t), a(1-\cos t), 4 a \sin (t / 2))$, where $a>0$ a constant. Consider the curve $\beta(t)=\gamma(t)+a \sqrt{1+\sin ^{2}(t / 2)} \mathbf{n}(t)$ with \mathbf{n} the normal vector to $\gamma(t)$. Show that this curve is a sinusoide, i.e. the graph of a sine wave.
b. 1 Show that the curve with parametrisation $\gamma(t)=(\sin (2 t), 1-\cos (2 t), 2 \cos (t))$, $-\pi<t<\pi$ is a spherical curve. Which are the centre and the rdius of the sphere supporting $\gamma(t)$?
b.2 Show that the curve $\gamma(t)$ with parametrisation $(16 \cos (t) / 9-32 \sin (t) / 9-$ $t / 3,16 \cos (t) / 9+4 \sin (t) / 9+8 t / 3,28 \cos (t) / 9+16 \sin (t) / 9-4 t / 3)$ is a helix and determine its axis.
b.3 Let $\gamma(s)$ be a circular helix. Consider $\beta(s)=\gamma(s)+\mathbf{b}(s)$. Show that $\beta(s)$ is a helix. Notice that s is not the arc-length of $\beta(s)$

Exercise 6 a.1 Determine a plane curve with $\bar{\kappa}=\left(1+s^{2}\right)^{-1}$, s arc-length,
a. 2 Determine a plane curve such that $s=a \tan \phi$, a constant, ϕ is the rotation angle of the tangent vector.
a.3 Determine a plane curve such that $\bar{\kappa}=\left(1+s^{2}\right)^{-1 / 2}$, s arc-length.

Exercise $7 \quad$ b. 1 Let $\mathbf{F}: I \rightarrow \mathbb{R}^{3}, I=(-\pi, \pi)$ be defined by $\mathbf{F}(t)=\left(\sin t, \sin t \cos t, \cos ^{2} t\right)$. Determine the unitary tangent vector \mathbf{t} to a parametrization $\gamma: I \rightarrow \mathbb{R}^{3}$ whose torsion function τ is constant of value 2 and whose binormal vector $\mathbf{b}(t)=\mathbf{F}(t)$. (Observe that determines κ and $|\tau|$. Is this true?).
b. 2 Integrate the Frenet-Serret equations to show that, if the curvature and the torsion of a regular curve $\gamma(t)$ are $\kappa \neq 0$ and $\tau=1 / a$ (a a constant), then $\gamma(t)=a \int g(t) \times g^{\prime}(t) d t$, where $g(t)$ is a vectorial function satisfying that $|g(t)|=1$ and $\left[g, g^{\prime}, g^{\prime \prime}\right] \neq 0$.
b.3 Using Exercise 2.a. 1 show that the normal vector \mathbf{n} of a unit-speed curve without inflexion points determine the curvature and torsion of the curve.

Exercise 8 Consider the family of curves defined by $F(x, y)=a$. We will consider that $F_{y}=\frac{\partial F}{\partial y} \neq 0$
a. 1 Consider the family of curves given by $G(x, y)=b$ (again $G_{y}=\frac{\partial G}{\partial y} \neq 0$). Show that if the condition $\frac{\partial F}{\partial x} \frac{\partial G}{\partial x}+\frac{\partial F}{\partial y} \frac{\partial G}{\partial y}=0$ is satisfied, then each curve in the first family is orthogonal to each curve of the second family at the intersection point.
a. 2 Give the differential equation for the family of curves formed by those curves that intersect to each curve in the family $F(x, y)=a$ orthogonally.
a. 3 Deterrmine the family of lines orthogonal to the circles tangent to the x_{1}-axis at the origin O.

For the Exercises type b the curves are plane ones.
b.1 Show that $\kappa=\frac{\left|\frac{d^{2} y}{d x^{2}}\right|}{\left(1+\left(\frac{d y}{d x}\right)^{2}\right)^{3 / 2}}$, for a curve $y=y(x)$.
b.2 Show that $\kappa=\frac{\left|F_{x x} F_{y}^{2}-2 F_{x y} F_{x} F_{y}+F_{y y} F_{x}^{2}\right|}{\left(F_{x}+F_{y}\right)^{3 / 2}}$. Give the equation for the inflexion points
b. $3 \kappa=\frac{r^{2}+2\left(\frac{d r}{d \varphi}\right)^{2}-r \frac{d^{2} r}{d \varphi^{2}}}{\left(r^{2}+\left(\frac{d r}{d \varphi}\right)^{2}\right)^{3 / 2}}$, for a curve in polar form $r=r(\varphi)$.

Exercise 9 Determine the quadratic Bézier curve $B(t), 0 \leq t \leq 1$ joining $A\left(M_{1} \cdot M_{2}, D_{1} . D_{2}\right)$ and $B\left(1.9, Y_{1} . Y_{2}\right)$ with tangent at $A=B(0)$ making a $\frac{\pi}{4}$ angle with the x_{1}-axis and horizontal tangent at $B=B(1)$.

Exercise $10 A$ cubic Bézier curve $B(t)$ is given by the control points $\mathbf{b}_{0}=$ $\left(0.2, D_{1} D_{2} . D_{1} D_{2}\right), \mathbf{b}_{1}=(1.0,0.4), \mathbf{b}_{2}=(1.8,1.2)$ and $\mathbf{b}_{3}=\left(3.4, Y_{1} . Y_{2}\right)$.
a) Give the parametric expression of the curve.
b) Calculate the curvature.
c) Determine the Bézier curve obtained by rotating the curve an angle $\frac{\pi}{4}$ with centre the origin in \mathbb{R}^{2}.

Exercise 11 Use the de Casteljau algorithm on the curve $B(t)$ in the previous exercise to subdivide the curve in two Bézier curves that meet at the point with parameter $B\left(0.5 Y_{2}\right)$.

Exercise 12 a) Show that the equations for the envelope of the uniparametric family of plane curves given by $F(x, y, a, b)=0$, where the parameters a, b satisfy the condition $\varphi(a, b)=0$ are

$$
F(x, y, a, b)=0, \quad \varphi(a, b)=0, \quad \operatorname{det}\left(\frac{\partial(F, \varphi)}{\partial(a, b)}\right)=0
$$

$\left(\frac{\partial(F, \varphi)}{\partial(a, b)}\right.$ is the Jacobian of the function $\left.(F(\cdot, \cdot, a, b), \varphi(a, b))\right)$
b) We know that the envelope of the family of straight lines $a x+y+b=0$ is the circle with equation $x^{2}+y^{2}=c^{2}$, with a, b parameters and c a constant. Give the condition satisfied by a and b (the function $\varphi(a, b)=0$).
c) Let $\mathbf{x}(s), s \in[0, l]$, be a plane simple closed curve such that its curvature satisfies $0<\kappa(s) \leq c$, with c a constant. Prove that $l \geq \frac{2 \pi}{c}$.
d) Let $\mathbf{x}(s)$ be a plane closed curve with rotation index I such that its curvature satisfies $0<\kappa(s) \leq c$, with c a constant. Prove that $l \geq \frac{2 \pi I}{c}$, where l is the length of $\mathbf{x}(s)$.

