Linear difference equations of order 1 and 2

$f(n), g(n), h(n)$ given functions of n, where $n \geq 0$ is an integer. Find the function (sequence) $x(n)=x_{n}$ such that

$$
\begin{array}{ll}
\text { order 1: } & x_{n+1}+f(n) x_{n}=g(n) \\
\text { order 2: } & x_{n+2}+f(n) x_{n+1}+g(n) x_{n}=h(n) \tag{2}
\end{array}
$$

Both have solution structure $x_{n}=x_{n, h}+x_{n, p}$, where $x_{n, h}$ are all homogeneous solutions (the solutions if $g(n)=0$ in (1) and $h(n)=0$ in (2)), $x_{n, p}$ is one particular solution.

These are more difficult to solve than the corresponding differential equations because there are no primitive functions. For constant coefficients the homogeneous solution is easy to find:

$$
\begin{aligned}
& x_{n+1}+a x_{n}=0 \quad \text { has the solution } \quad x_{n}=c(-a)^{n} \\
& x_{n+2}+a x_{n+1}+b x_{n}=0 \quad \text { has the solution } \quad x_{n}=c_{1}\left(r_{1}\right)^{n}+c_{2}\left(r_{2}\right)^{n}
\end{aligned}
$$

where $r_{1} \neq r_{2}$ are the solutions to $r^{2}+a r+b=0$. In case $r_{1}=r_{2}$, then $x_{n}=\left(c_{1} n+c_{2}\right) r_{1}^{n}$. If $r_{1,2}=\alpha \pm i \beta=\rho e^{ \pm i \varphi}$ (polar form) are complex, one can write $r_{1,2}^{n}=\rho^{n} e^{ \pm i n \varphi}$.
The constant c in (3) can be determined by an initial value of x_{0}. In (4) c_{1} and c_{2} are determined by giving x_{0} and x_{1}.

For non-homogeneous equations, a particular solution is found by some Ansatz.
Observe that the condition for $x_{n} \rightarrow 0$ as $n \rightarrow \infty$ in (3) is $|a|<1$, and in (4) $\left|r_{1,2}\right|<1$.

Example

Solve $x_{n+2}-x_{n+1}-6 x_{n}=0$ with initial conditions $x_{0}=3$ and $x_{1}=4$
Solution: the solutions to $r^{2}-r-6=0$ are $r_{1}=3$ and $r_{2}=-2 \Rightarrow$ the general solution is $x_{n}=c_{1} 3^{n}+c_{2}(-2)^{n}$
The initial condition at $n=0$ gives $x_{0}=c_{1} 3^{0}+c_{2}(-2)^{0}=c_{1}+c_{2}=3(1)$, and at $n=1$ we get $x_{1}=c_{1} 3^{1}+c_{2}(-2)^{1}=3 c_{1}-2 c_{2}=4$ (2). (1) and (2) $\Rightarrow c_{1}=2$ and $c_{2}=1 \Rightarrow$ the solution with the given initial conditions is $x_{n}=2 \cdot 3^{n}+(-2)^{n}$

TEST QUESTIONS

1. Solve $x_{n+1}+3 x_{n}=0$ with initial condition $x_{0}=5$
2. Solve $x_{n+2}+6 x_{n+1}+5 x_{n}=0$ with initial conditions $x_{0}=5$ and $x_{1}=3$
3. Solve $x_{n+2}+6 x_{n+1}+9 x_{n}=0$ with initial conditions $x_{0}=5$ and $x_{1}=3$
4. Solve $x_{n+2}-2 x_{n+1}+2 x_{n}=0$ with initial conditions $x_{0}=5$ and $x_{1}=3$

ANSWERS NEXT PAGE

ANSWERS

1. General solution is $x_{n}=c(-3)^{n}$.

Initial condition $x_{0}=5 \Rightarrow c=5 \Rightarrow x_{n}=5(-3)^{n}$.
2. General solution is $x_{n}=c_{1}(-1)^{n}+c_{2}(-5)^{n}$.

Initial conditions $x_{0}=5, x_{1}=3 \Rightarrow c_{1}+c_{2}=5,-c_{1}-5 c_{2}=3 \Rightarrow c_{1}=7, c_{2}=-2 \Rightarrow$ $x_{n}=7(-1)^{n}-2(-5)^{n}$
3. General solution is $x_{n}=\left(c_{1} n+c_{2}\right)(-3)^{n}$

Initial conditions $x_{0}=5, x_{1}=3 \Rightarrow c_{2}=5,\left(c_{1}+c_{2}\right)(-3)=3 \Rightarrow c_{1}=-6, c_{2}=5 \Rightarrow$ $x_{n}=(-6 n+5)(-3)^{n}$
4. General solution is $x_{n}=c_{1}(1+i)^{n}+c_{2}(1-i)^{n}=(\sqrt{2})^{n}\left(c_{1} e^{i n \pi / 4}+c_{2} e^{-i n \pi / 4}\right)=$ $=2^{n / 2}\left(c_{3} \cos \frac{n \pi}{4}+c_{4} \sin \frac{n \pi}{4}\right)$
Initial conditions $x_{0}=5, x_{1}=3 \Rightarrow c_{3}=5,2^{1 / 2}\left(c_{3} \frac{1}{\sqrt{2}}+c_{4} \frac{1}{\sqrt{2}}\right)=3 \Rightarrow c_{3}=5, c_{4}=-2 \Rightarrow$ $x_{n}=2^{n / 2}\left(5 \cos \frac{n \pi}{4}-2 \sin \frac{n \pi}{4}\right)$

