
Neural networks

Göran Bergqvist

AI Competence for Sweden

Göran Bergqvist Neural networks

Neural network = function (of several variables) f (x̄), which is

a composition of several ”simple” functions

y = f (x̄) = fL(. . . f̄2(f̄1(x̄)) . . .) = (fL ◦ · · · ◦ f̄2 ◦ f̄1)(x̄)

f̄1 f̄2 f̄3 fL

x̄ 7→ f̄1(x̄) 7→ f̄2(f̄1(x̄)) 7→ · · · 7→ fL(. . . f̄2(f̄1(x̄)) . . .) = y

L = number of layers in the neural network

f̄j ”simple”:
each f̄j usually matrix multiplication (linear), then maybe adding a
constant vector (affine), followed by σ (nonlinear but simple)

Göran Bergqvist Neural networks

A nonlinear function and its derivative:

t

y

σ(t) = (t)+ =

{
t , t ≥ 0
0 , t < 0

and H(t) = σ′(t) =


1 , t > 0
0 , t < 0

undef, t = 0

For vectors:

σ̄(t̄) = (t̄)+ =

t1
...
tn


+

=

(t1)+
...

(tn)+

, e.g. σ̄


−1
2
3
−4

 =


−1
2
3
−4


+

=


0
2
3
0


σ̄ zeros negative components

Göran Bergqvist Neural networks

Example of neural network with 3 layers, f (x̄) = (f3 ◦ f̄2 ◦ f̄1)(x̄) :

A1 =

(
2 −1
1 1

)
,B1 =

(
−1
2

)
,A2 =

 1 1
2 0
−3 1

 ,A3 =
(
1 −1 1

)
x̄ ∈ R2, x̄1 = f̄1(x̄) = σ̄(A1x̄ + B1) = (A1x̄ + B1)+ ∈ R2

x̄2 = f̄2(x̄1) = σ̄(A2x̄1) = (A2x̄1)+ ∈ R3 , y = f3(x̄2) = A3x̄2∈ R

E.g., x̄ =

(
2
1

)
⇒ x̄1 = (A1

(
2
1

)
+ B1)+ =

(
2
5

)
+

=

(
2
5

)
⇒

⇒ x̄2 = (A2

(
2
5

)
)+ =

 7
4
−1


+

=

7
4
0

 ⇒ y = A3

7
4
0

 = 3

Hence, f (

(
2
1

)
) = (f3 ◦ f̄2 ◦ f̄1)(

(
2
1

)
) = (f3 ◦ f̄2)(

(
2
5

)
) = f3(

7
4
0

) = 3

Göran Bergqvist Neural networks

Neural network y = f (x̄) = (fL ◦ · · · ◦ f̄2 ◦ f̄1)(x̄)

Layer j : f̄j(x̄j−1) = σ̄(Aj x̄j−1 + Bj) = (Aj x̄j−1 + Bj)+

How do we find a neural network for a certain application?
An input x̄ should give a good output y .
How do we determine all the matrices in the network?

Use that we have training data:

for N points x̄ (1), . . . , x̄ (N) (input data),

we know the output values y (1), . . . , y (N)

Fit the matrices Aj and Bj in all f̄j to our training data.

Called supervised learning. We ”train” the network.
Deep learning if many layers.

Göran Bergqvist Neural networks

Remember: Least-square fit of line y = kx + m (find k and m) in R2 to

N data points :

x

y

x(1), y (1)

x(2), y (2)

x(N), y (N)

y = kx + m

Find k and m such that
N∑
r=1

((kx (r) + m)− y (r))2 = `(k,m) is minimized:

Solve

∇`(k,m) = (`′k , `
′
m) =
∇(g2)
=2g∇g

2
N∑

r=1

(kx (r) +m−y (r))∇(kx (r) + m − y (r))︸ ︷︷ ︸
= (x (r),1)

= (0, 0)

Alt.: `(k,m) = ||Ax̄ − b̄||2, where A =

x (1) 1
...

...

x (N) 1

, x̄ =

(
k
m

)
, b̄ =

y (1)

...

y (N)


Linear algebra: solve the normal equations ATAx̄ = AT b̄ to obtain k and m
(least-square solution to the unsolvable system Ax̄ = b̄).

Göran Bergqvist Neural networks

y = f (x̄) = (fL ◦ · · · ◦ f̄2 ◦ f̄1)(x̄) ; f̄j(x̄j−1) = (Aj x̄j−1 + Bj)+

Determine the matrices Aj and Bj in all f̄j such that f (x̄ (k)) ≈ y (k) for
the training data {x̄ (k), y (k)}, k = 1, . . . ,N.

Denote all elements in A1,B1, . . . ,AL,BL by w1, . . . ,wM .

Least-square fit of the matrices to training data:

Find w̄ =(w1, . . . ,wM) that minimizes `(w̄) = 1
N

N∑
k=1

(f (x̄ (k); w̄)− y (k))2

Write f (x̄ (k); w̄) since the output f depends on the matrix elements w̄ .

Min-problem in RM : ∇`(w̄) = 2
N

N∑
k=1

(f (x̄ (k); w̄)− y (k))∇w f (x̄ (k); w̄) = 0̄

gives stationary points, but in practice impossible to solve exactly (M
very large). Find an algorithm for minimizing `(w̄).

Note: ∇w means gradient w.r.t. the w̄ -variables (not w.r.t. x̄). The constant

factor 1
N

in `(w̄) has no impact on the result but is usually included.

Göran Bergqvist Neural networks

Minimize `(w̄) = 1
N

N∑
k=1

(f (x̄ (k); w̄)− y (k))2 on RM

∇`(w̄) = 2
N

N∑
k=1

(f (x̄ (k); w̄)− y (k))∇w f (x̄ (k); w̄)

Algorithm:

Pick initial point w̄(0)∈RM , `(w̄) decreases fastest in direction −∇`(w̄(0))

⇒ step in this direction to new point w̄(1) = w̄(0) − η∇`(w̄(0)) ∈ RM .
Continue in direction −∇`(w̄(1)) to new point w̄(2) etc etc. Check
`(w̄(k)) at each step and stop the iteration when it is acceptably small.
Then w̄ is determined, and hence all matrices are determined, and the
neural network is ready to be used.

∇`(w̄(0))

∇`(w̄(1))

∇`(w̄(2))

w̄(0)

w̄(1)

w̄(2)

w̄(3)

This method is called ”steepest
descent” in optimization. The
best length η of the steps can be
difficult to decide.

How do we calculate ∇`(w̄) ?

How to calculate∇w f (x̄ (k); w̄) ?

Göran Bergqvist Neural networks

The Jacobian matrix of f̄ (x̄) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) is

f̄ ′(x̄) =
∂(f̄)

∂(x̄)
=
∂(f1, . . . , fm)

∂(x1, . . . , xn)
=


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fm
∂x1

. . . ∂fm
∂xn

 m × n matrix

If ḡ(x̄) = Ax̄ (linear) or ḡ(x̄) = Ax̄ +B (affine), then ḡ ′(x̄) =
∂(ḡ)

∂(x̄)
= A

σ̄(t̄) =

σ(t1)
...

σ(tn)

⇒ σ̄′(t̄) =
∂(σ̄)

∂(t̄)
=

H(t1) . . . 0
...

. . .
...

0 . . . H(tn)

 = H(t̄)

If x̄ constant and the elements of A and B variables in Ax̄ + B, write e.g.

ḡ(w1, . . . ,w6) =

(
w1 w2

w3 w4

)(
x1

x2

)
+

(
w5

w6

)
=

(
w1x1 + w2x2 + w5

w3x1 + w4x2 + w6

)
⇒

∂(g1, g2)

∂(w1, . . . ,w6)
=

(
x1 x2 0 0 1 0
0 0 x1 x2 0 1

)
=

(
x̄T 0̄T 1 0
0̄T x̄T 0 1

)
= M(x̄)︸ ︷︷ ︸

from A

︸ ︷︷ ︸
from B

︸ ︷︷ ︸
block notation

Göran Bergqvist Neural networks

Chain rule: The composition (f̄ ◦ ḡ)(x̄) = f̄ (ḡ(x̄)) has Jacobian

(f̄ ◦ ḡ)′(x̄) = f̄ ′(ḡ(x̄))ḡ ′(x̄) or
∂(f̄)

∂(x̄)
=
∂(f̄)

∂(ḡ)

∂(ḡ)

∂(x̄)
(matrix mult.)

One layer f̄j(x̄j−1) = σ̄(Aj x̄j−1 +Bj︸ ︷︷ ︸
= t̄j

), where x̄j−1 = f̄j−1(x̄j−2), has matrix

∂(f̄j)

∂(f̄j−1)
= H(t̄j)Aj = HjAj (usually no σ̄ or HL in last fL)

Neural network y = f (x̄) = (fL ◦ · · · ◦ f̄2 ◦ f̄1)(x̄) = (fL ◦ · · · ◦ f̄j+1)(x̄j) =
(fL ◦ · · · ◦ f̄j+1)[f̄j(x̄j−1)] = (fL ◦ · · · ◦ f̄j+1)[σ̄(Aj x̄j−1 + Bj)]

If Aj and Bj contain elements wp, . . . ,wq, repeated use of chain rule gives

∂(y)

∂(wp, . . . ,wq)
=

∂(fL)

∂(f̄L−1)

∂(f̄L−1)

∂(f̄L−2)
. . .

∂(f̄j+1)

∂(f̄j)

∂(f̄j)

∂(wp, . . . ,wq)
=

= AL(HL−1AL−1) . . . (Hj+1Aj+1)(HjMj) where Mj = M(x̄j−1)

Göran Bergqvist Neural networks

For each x̄ (k) we calculate ∇w f (x̄ (k); w̄) =
∂(y)

∂(w1, . . . ,wM)
=

= (ALHL−1 . . .A2H1M1︸ ︷︷ ︸
derivatives on elements in A1,B1

,ALHL−1 . . .H2M2︸ ︷︷ ︸
on elements in A2,B2

, . . . ,ALHL−1ML−1︸ ︷︷ ︸
in AL−1,BL−1

, ML︸︷︷︸
in AL

),

and the difference f (x̄ (k); w̄)− y (k). Add ⇒

∇`(w̄) = 2
N

N∑
k=1

(f (x̄ (k); w̄)− y (k))∇w f (x̄ (k); w̄)

is now computed, and can be used for steepest descent calculations.

Göran Bergqvist Neural networks

Example

Find a small neural network f (x̄) = (f3 ◦ f̄2 ◦ f̄1)(x̄) = f3(f̄2(f̄1(x̄))) that
fits N = 5 training data points (x̄ (1), y (1)), . . . , (x̄ (5), y (5)) :

(
(

-0.5
1.1

)
, 3), (

(
0.6
-0.7

)
, 1.5), (

(
1.4
0.6

)
, 2), (

(
1.1
-0.4

)
, 1.7), (

(
-0.3
-1.1

)
, 2.5)

The network structure should be

x̄1 = f̄1(x̄) = (A1x̄ + B1)+ , A1 =

(
w1 w2

w3 w4

)
, B1 =

(
w5

w6

)
x̄2 = f̄2(x̄1) = (A2x̄1 + B2)+ , A2 =

(
w7 w8

w9 w10

)
, B2 =

(
w11

w12

)
y = f3(x̄2) = A3x̄2 , A3 =

(
w13 w14

)
Minimize `(w̄) = 1

5

5∑
k=1

(f (x̄ (k); w̄)− y (k))2 on R14

Step along minus ∇`(w̄) = 2
5

5∑
k=1

(f (x̄ (k); w̄)− y (k))∇w f (x̄ (k); w̄)

∇w f (x̄ (k); w̄) =
∂(y)

∂(w1, . . . ,w14)
= (A3H2A2H1M1︸ ︷︷ ︸

deriv. on w1,..,w6

,A3H2M2︸ ︷︷ ︸
w7,..,w12

, M3︸︷︷︸
w13,w14

)

Göran Bergqvist Neural networks

Try starting at w̄(0) = (1, 2, 0,−1,−1, 1, 0, 2, 1,−1, 1, 2, 1, 1), with steps
η = 0.05. Initially, the matrices are

A1 =

(
1 2
0 -1

)
,B1 =

(
-1
1

)
,A2 =

(
0 2
1 -1

)
,B2 =

(
1
2

)
,A3 =

(
1 1

)
Training data point x̄ (1) =

(
-0.5
1.1

)
, y (1) = 3 gives

x̄
(1)
1 =(A1x̄

(1)+B1)+ =
(

0.7
-0.1

)
+

=
(

0.7
0

)
⇒ x̄

(1)
2 =(A2x̄

(1)
1 +B2)+ =

(
1

2.7

)
+

=
(

1
2.7

)
⇒ f (x̄ (1); w̄)=A3x̄

(1)
2 = 3.7 and f (x̄ (1); w̄)−y (1) = 3.7− 3 = 0.7,

and H1 =

(
1 0
0 0

)
,H2 =

(
1 0
0 1

)
,M1 =

(
-0.5 1.1 0 0 1 0

0 0 -0.5 1.1 0 1

)
,

M2 =

(
0.7 0 0 0 1 0
0 0 0.7 0 0 1

)
,M3 =

(
1 2.7

)
, which gives

A3H2M2 = (0.7, 0, 0.7, 0, 1, 1),A3H2A2H1M1 = (-0.5, 1.1, 0, 0, 1, 0) so

∇w f (x̄ (1); w̄(0)) = (-0.5, 1.1, 0, 0, 1, 0, 0.7, 0, 0.7, 0, 1, 1, 1, 2.7) ~

⇒ term k =1 in ∇`(w̄) = 2
5

5∑
k=1

(f (x̄ (k); w̄)− y (k)︸ ︷︷ ︸
= 0.7 för k=1

)∇w f (x̄ (k); w̄)︸ ︷︷ ︸
=~ för k=1

is ready

Göran Bergqvist Neural networks

A1 =

(
1 2
0 -1

)
,B1 =

(
-1
1

)
,A2 =

(
0 2
1 -1

)
,B2 =

(
1
2

)
,A3 =

(
1 1

)
Similar calculations for the 4 other training points x̄ (2), . . . , x̄ (5) gives

`(w̄(0)) = 1
5

5∑
k=1

(f (x̄ (k); w̄(0))− y (k))2= 6.862 and

∇`(w̄(0)) = 2
5

5∑
k=1

(f (x̄ (k); w̄(0))− y (k))∇w f (x̄ (k); w̄(0))≈

≈ (1.54, 1.03, 2.99, -2.98, 1.48, 5.72, 2.12, 6.44, 2.12, 4.17, 4.92, 3.84, 17.8, 5.63)

Take the step to the new point, w̄(1) = w̄(0) − 0.05∇`(w̄(0)) ≈
(0.92, 1.95, -0.15, -0.85, -1.07, 0.71, -0.11, 1.68, 0.89, -1.21, 0.75, 1.81, 0.11, 0.72)

New matrix values are therefore

A1≈
(

0.92 1.95
-0.15 -0.85

)
,B1≈

(
-1.07
0.71

)
,A2≈

(
-0.11 1.68
0.89 -1.21

)
,B2≈

(
0.75
1.81

)
,A3≈

(
0.11 0.72

)
Repeat the process with these matrices. Gives `(w̄(1)) ≈ 1.55, ∇`(w̄(1)) ≈
(0.25, -0.30, 0.48, -0.11, -0.25, 0.36, -0.02, -0.24, -0.11, -0.57, -0.22, -0.82, -5.20, -1.24)

and w̄(2) = w̄(1) − 0.05∇`(w̄(1)) ≈
(0.91, 1.96, -0.17, -0.85, -1.06, 0.70, -0.10, 1.69, 0.90, -1.18, 0.76, 1.85, 0.37, 0.78)

Göran Bergqvist Neural networks

Steps with the gradient method gives (approximative values)

Point A1 B1 A2 B2 A3 error `(w̄(k))

w̄(0)

(
1 2
0 -1

) (
-1
1

) (
0 2
1 -1

) (
1
2

) (
1 1

)
6.86

w̄(1)

(
0.92 1.95
-0.15 -0.85

) (
-1.07
0.71

) (
-0.11 1.68
0.89 -1.21

) (
0.75
1.81

) (
0.11 0.72

)
1.55

w̄(2)

(
0.91 1.96
-0.17 -0.85

) (
-1.06
0.70

) (
-0.10 1.69
0.90 -1.18

) (
0.76
1.85

) (
0.37 0.78

)
0.51

...

...

w̄(5)

(
0.86 1.98
-0.19 -0.88

) (
-1.06
0.73

) (
-0.12 1.72
0.88 -1.19

) (
0.78
1.85

) (
0.54 0.76

)
0.26

...

...

w̄(10)

(
0.79 2.01
-0.20 -0.92

) (
-1.05
0.76

) (
-0.13 1.73
0.86 -1.23

) (
0.79
1.82

) (
0.55 0.75

)
0.22

...

...

w̄(20)

(
0.66 2.06

-0.21 -0.98

) (
-1.03
0.81

) (
-0.13 1.72
0.85 -1.31

) (
0.79
1.79

) (
0.55 0.78

)
0.15

...

...

w̄(40)

(
0.43 2.13

-0.28 -1.00

) (
-1.02
0.81

) (
-0.13 1.73
0.87 -1.33

) (
0.78
1.78

) (
0.55 0.81

)
0.087

...

When we consider ` sufficiently small, we have found our neural network
and it is ready to be used!

Göran Bergqvist Neural networks

Comments

Number of training data points might be N ∼ 103 − 106

Number of elements in all matrices (length of w̄) can be M ∼ 106 − 109

Lots of computing time is needed to calculate the direction ∇`(w̄) of the
next step as a sum from N training points. Usually one randomly chooses
a smaller set of these (∼ 10− 102), and approximates ∇`(w̄) with the
sum over those. This is called a stochastic gradient method and saves
lots of time. Huge neural networks may take weeks to train on
supercomputers.

The step length η is called ”learning rate”. Choosing η is a big problem.
For smaller optimization problems there are ways of finding the best η.
For neural networks they require too much time, and one decides on a
value from the start (sometimes decreaseing values in each iteration).

The number of iterations with the gradient method before one stops is
called epochs. Choice of initial point w̄(0) is difficult, but techniques for
good choices exist. One may try several w̄(0), but it takes time.

The nonlinear function σ(t) is called activation function. There are many
choices but (t)+ is now the most common, called ReLU(t) by AI people.

Göran Bergqvist Neural networks

More comments

The last fL is often different depending on the type of output wanted
(scalar/vector, continuous/discrete etc).

Different choices of loss function `(w̄) can be made, depending on what
error measure one wants for training data.

Elements in w̄ (all matrix elements) are called weights. The number of
layers, sizes of matrices, choice of η, etc are called the hyperparameters
of the net. One can try different choices of hyperparameters but it costs.
The networks are called deep if the have many layers, examples with

∼ 102 − 103 layers exist.

Some training data points (often 10-30 %) are not used when training
the net, but are kept as test data for a test if the ready net seems OK.
This is fundamental for checking that one has not over- or underfitted
the size of the net. Overfit ⇒ generalizes poorly to new input data x̄ .
Underfit ⇒ cannot describe the function one looks for.

The computation of ∇`(w̄) using the chain rule is called the back
propagation algorithm, and some claim it was discovered in the 1980’s.
Other sources claim the chain rule was known before that

Göran Bergqvist Neural networks

More comments (2)

The min-problem in RM is very difficult to analyze analytically, probably
a huge number of stationary points exist, and many local minima. That
the above methods converge to networks that work incredibly well in
applications is a mathematical mystery. There are almost certainly many
different nets that work equally well for a given application. Also in other
mathematical contexts functions of many variables seem to have many
almost equally good local optima. To design and train neural networks
has become an art for skilled engineers and mathematicians!

Many applications utilizes matrices (and tensors) with special structure.
Although the matrices are big, many elements are 0 and the others have
only a few different values ⇒ fewer weights ⇒ much faster to train.
Used with great success in, e.g., computer vision, where input data
points x̄ really are three matrices (or a 3-tensor); these nets are called
convolutional neural networks (CNN’s).

There’s lots of ready software for building neural networks, using them
does not require knowing how they work or how they are trained. Like a
black box. Test yourselves on playground.tensorflow.org !

Göran Bergqvist Neural networks

Everything fine ?
Neural networks don’t give explanations, difficult to know what in the
input x̄ that decide f (x̄). Better than humans in analyzing images or
playing games, but has nothing to do with logical thinking or ability to
follow rules. Who’s responsible if something goes wrong in,e.g., medicine?

Ethical and juridical problem:
Bias is built into the nets if it is present in training data, many examples
of discrimination exist. Who is responsible? How can fairness be
guaranteed? Neural networks are used by banks to decide who can get a
loan (and they don’t know themselves what information about us that
decides), in medicine to make diagnoses, in some countries to decide if
convicted need to spend time in prison.

Individuals may have legal right to get decisions about them motivated
and explained, difficult if neural networks were used.

Mass survaillence with face recognition - integrity?

Language translating programs can have discriminating translations built
in (Google Translate is a neural network since a couple of years).

Neural networks can be manipulated by those who know how they are
constructed, and training data can be manipulated.

Göran Bergqvist Neural networks

Finally

Are (artificial) neural networks similar to the net of neurons in our
brain? The neurons in our brains are incredibly many, and their
link structure complicated.

One has started designing hardware with special architecture that
should imitate the brain and lead to much faster training of
(artificial) neural networks.

Neural networks are now used everywhere, and within many areas,
including biology, chemistry and medicine, their use is increasing
dramatically. They can be used in many positive ways, but one
must be awary of the risks. Then it is good to know how they
(”the algorithms”) work. That’s your job!

Remember:

A neural network is a function y = f(x̄) which is a composition of
several simpler functions.
It is trained by minimizing a loss function for a large amount of
training data, then gradient methods and the chain rule are used.

Göran Bergqvist Neural networks

