
LiU/MAI/Optimization 2 januari 2023 Julia/JuMP quickguide

About Julia

Julia is a young programming language (development started in 2009) and it is gaining a
lot of attention in areas where efficient and accurate computations are needed. The goal
is to create a free language that is both high-level and fast. Julia uses a just-in-time (JIT)
compiler and compiles all code (by default) to machine code before running it. Julia can
be compiled to binary executables using a package for it supporting all Julia features.

To download and install Julia:

https://julialang.org/downloads/platform/

About JuMP

Julia itself is a programming language, and JuMP is a package for Julia which makes
mathematical modelling easy.

https://jump.dev/JuMP.jl/stable/

In order to solve optimization models, a solver is also needed. JuMP supports a number
of open-source and commercial solvers for a variety of problem classes, including linear,
mixed-integer, second-order conic, semidefinite, and nonlinear programming.

https://jump.dev/JuMP.jl/stable/installation/#Supported-solvers

We will make use of HiGHS and Ipopt, two solvers which are free to use and easy to install.

Solver HiGHS

HiGHS is a high performance software for linear optimization. It is a package of open source
serial and parallel solvers for large-scale sparse linear programming (LP), mixed-integer
programming (MIP), and quadratic programming (QP) models.

https://highs.dev

Solver Ipopt

Ipopt (Interior Point Optimizer, pronounced “Eye-Pea-Opt”) is an open source software
package for large-scale nonlinear optimization.

https://coin-or.github.io/Ipopt/

Overview

Julia

JuMP

HiGHS

Ipopt

(programming language)

(package for modelling)

(solver LP / MIP)

(solver NLP)

1

LiU/MAI/Optimization 2 januari 2023 Julia/JuMP quickguide

Packages needed

The following packages must be installed in order to run and solve linear and non-linear
optimization problems. For courses using Julia/JuMP, these packages are pre-installed on
the computer system in our computer labs.

To install a package, use the command Pkg.add("package_name").

#---

Packages -- import and install

#---

import Pkg;

Pkg.add("JuMP") # optimization modelling package

Pkg.add("HiGHS") # solver for LP and MIP

Pkg.add("Ipopt") # solver for NLP

Pkg.add("Plots") # plot library

Pkg.add("DataFrames") # structures data in a nice way

Pkg.add("JSON3") # read data from JSON-files

#---

To make use of a package, include the command using in the following way.

#---

Packages -- use packages in your code

#---

using JuMP

using HiGHS

using Ipopt

using Plots

using DataFrames

using JSON3

#---

Files

Files with code for Julia use the extension “.jl” and are executed (run) using the
include("filename.jl") command. To edit Julia files, use your favorite text editor (such
as emacs, vim, atom or gedit). A great option is vscode, a powerful software development
environment.

Get started

To start Julia, do the following.

1. Start a terminal

2. Go to the correct folder (using cd commands)

3. Type: julia

To run the code given for Example 1 on page 8, write include("example1.jl") in Julia.

2

LiU/MAI/Optimization 2 januari 2023 Julia/JuMP quickguide

Syntax

Here are some examples of the most common commands in Julia/JuMP. This guide is not
by any means complete, any constructive feedback is most welcome.

Optimization models

A mathematical optimization model is composed of parameters, variables, constraints, and
an objective function. Parameters can be provided either by vectors and matrices directly
in Julia, or specified in a separate file (using some standard data format like csv or JSON).

The JuMP package uses Model objects to describe an optimization problem. The following
example gives an overview (pseudocode) of what it looks like. (More details will follow.)

LP_model = Model() # create an empty model object "LP_model"

set_optimizer(LP_model, ...) # specify which solver to use

@variable(LP_model, ...) # add variables to the model

@constraint(LP_model, ...) # add constraints to the model

@objective(LP_model, ...) # add an objective function to the model

optimize!(LP_model) # solve the optimization model

objective_value(LP_model) # display the objective value

value.(var_name) # display the value of variable "var_name"

Parameters

It is possible to use scalars, vectors and matrices to collect and store numerical values
(digits) or text strings (names). Avoid using å, ä, ö in names. Here are some example:

n = 9 # parameter n is assigned the value 9

c = [70 60 50] # 1x3 matrix with values 70, 60 and 50,

i.e. c[1] = 70, c[2] = 60, c[3] = 50

A = [12 14 7 11 ; # matrix A is assigned the given values,

16 9 10 12 ; # i.e. A[1,1] = 12, A[1,2] = 14 and so on

10 21 12 19]

S = [1 2 3 4 5 6] # 1x6 matrix with numbers 1,2,...,6

PRIMES = [3 5 7 11 13] # 1x5 matrix with the first 5 odd primes

N = [i for i in 1:n] # vector with numbers 1..n

COLOR = ["red" "white" "blue"]

ANIMAL = ["elk" "horse" "duck" "fox" "cat" "dog"]

It is also possible to define tuples, for example, a set of pairs:

Create vector of tuples with pairwise ordered numbers

PAIRS = [(i,j) for i in N, j in N if i < j]

Notice how you can filter elements in the sets using the “if” syntax.

3

LiU/MAI/Optimization 2 januari 2023 Julia/JuMP quickguide

Model object

Start by creating an empty model object, and optionally specify which solver to use.

Create an empty model object "model"

model = Model()

Create a model object "model_MIP", and use HiGHS as solver (LP + MIP problems)

model_MIP = Model(HiGHS.Optimizer)

Create a model object "model_NLP", and use Ipopt as solver (NLP problems)

model_NLP = Model(Ipopt.Optimizer)

Solvers can be assigned (or changed) using the command set_optimizer.

set_optimizer(model, HiGHS.Optimizer)

Variables

Variables are defined using the command @variable. It is possible to declare different
kinds of variables, such as binary, integer and continuous variables. It is also possible to
declare upper and lower bounds. Here are some examples:

@variable(model, x_free) # continuous variable (free)

@variable(model, x_lower >= 0) # continuous variable, lower bound 0

@variable(model, x_upper <= 1) # continuous variable, upper bound 1

@variable(model, 2 <= x_inter <= 5) # continuous variable, 2 <= x <= 5

@variable(model, x_bin, Bin) # binary variable, that is, either 0 or 1

@variable(model, x_int, Int) # integer variable, only integer values OK

Variables with indices

Variables are often defined with an index, for example, one for each time step t, or for
different types of products i. It is also possible to declare variables with multiple indices,
for example Xij . The following syntax is used:

@variable(model, x[1:6] >= 0) # variable vector, positive x[i], i=1,...,6

@variable(model, x[S] >= 0) # equivalent declaration of x[i], using S

@variable(model, z[1:3] >= 0, Int) # positive integer variables z[i], i=1,..,3

@variable(model, X[1:3,1:4]) # variable matrix X[i,j], i=1,..,3 j=1,..,4

@variable(model, y[COLOR], Bin) # binary variable for each color in COLOR

@variable(model, Y[ANIMAL,COLOR]) # variables for all animal-color combinations

@variable(model, u[PAIRS], Bin) # binary variable indexed over the set of

tuples PAIRS, i.e. u[(i,j)]

@variable(model, q[1:8,PAIRS] >=0) # variable with two indices, where the last

index comes from PAIRS, i.e. q[k,(i,j)]

4

LiU/MAI/Optimization 2 januari 2023 Julia/JuMP quickguide

Summation

The command sum can be used to state a summation, which is often useful both in the
objective function and in the constraints. Here are some examples:

sum(x[j] for j in 1:n) # the sum x[1] + x[2] + ... + x[n]

sum(x[j] for j in N) # same thing, now using set N

sum(y[i] for i in COLOR) # the sum y["red"] + y["white"] + y["blue"]

Double summation

It is of course possible to model double and triple summations.

3∑
i=1

4∑
j=1

Xij ⇔ sum(X[i,j] for i in 1:3, j in 1:4)

8∑
k=1

∑
(i,j)∈PAIRS

qk,(i,j) ⇔ sum(q[k,(i,j)] for k in 1:8, (i,j) in PAIRS)

Conditional summation

Sometimes it is helpful to summarize over a restricted set, or define rules for when to
include a certain value.

Sum over i in the range of 1 to 10 such that i is an element of PRIMES

sum(x[i] for i in 1:10 if i in PRIMES)

Sum over i in the set PRIMES and j in the set PRIMES, such that i is in

the range of 2 to 5, and j is in the range of 3 to 9

sum(x[i,j] for i in PRIMES, j in PRIMES if 2 <= i <= 5 && 3 <= j <= 9)

For a fix and given j, sum over all i such that (i,j) is an element of PAIRS

sum(u[(i,j)] for i in N if (i,j) in PAIRS)

Objective function

An objective function is defined using the command @objective, and it is necessary to
specify if it is a maximization (Max) or minimization (Min) problem. Some examples:

@objective(model, Max, sum(c[i]*z[i] for i in 1:3)) # maximization

@objective(model, Min, 2*y["white"] + 3*y["blue"]) # minimization

@objective(model, Min, sum(A[i,j]*X[i,j] for i in 1:3, j in 1:4))

A non-linear objective function is defined using the command @NLobjective.

@NLobjective(model, Max, sum(x[i]^2 for i in 1:n) # non-linear objective

5

LiU/MAI/Optimization 2 januari 2023 Julia/JuMP quickguide

Constraints

Linear constraints are defined using the command @constraint. Here are some examples:

@constraint(model, con1, x[1] + x[2] + 2*x[3] <= 1) # inequality constraint

@constraint(model, con2, x[3] - x[4] + 3*x[5] >= 1) # inequality constraint

@constraint(model, con3, x[5] + x[6] == 1) # equality constraint

A non-linear constraint is defined using the command @NLconstraint. Here is an example:

@NLconstraint(model, con4, 2*x[1]^2 + x[2]^2 <= 4) # non-linear constraint

For all i (∀ i)

In many situations there are constraints for each type of product to be manufactured, or for
each time step, or for each element in a set. To avoid writing almost identical constraints
many times, the following syntax can be used:

The sum of the variable values on each row in matrix X is limited to at most 3

@constraint(model, MaxRow[i in 1:3],

sum(X[i,j] for j in 1:4) <= 3)

At most 2 animals of each color.

@constraint(model, Number[j in COLOR],

sum(Y[i,j] for i in ANIMAL) <= 2)

For i in the set N and j in the set N, if the value of the parameter b[i,j]

is 1, then there is a constraint that x[i,j] >= 5

@constraint(coverage[i in N, j in N ; b[i,j] == 1], x[i,j] >= 5)

Inventory balance constraint, for each time step t = 1,...,10

Note that variable "Inventory" needs to be defined for t=0

@constraint(model, InventoryBalance[t in 1:10],

Inventory[t-1] + Manufactured[t] - Demand[t] == Inventory[t])

Useful commands

There are many useful commands that can be used for the model object. Assume our model
object is named “model”, and it has a variable named “x”. Here are some examples:

print(model) # display the model in the terminal

optimize!(model) # solve the optimization model

objective_value(model) # display the objective value

value.(x) # display the value of x

6

LiU/MAI/Optimization 2 januari 2023 Julia/JuMP quickguide

Indexing done in different ways

In different situations, it is convenient to define parameters and variabels in different ways.
Syntax for accessing their values differ somewhat, so be observant!

Vector / Matrix

v = [70, 60, 50] # 3-element vector

m = [70 60 50] # 1x3 matrix

A = [12 14 7 11 ; # 3x4 matrix

16 9 10 12 ;

10 21 12 19]

Access values 70, 60 and 19

v[1] , m[2] , A[3,4]

Vector of vectors

Create a vector consisting of vectors

LIST = [["A","B","C","D","E"], ["Hello","Bye"]]

Access values "D" and "hello"

LIST[1][4] , LIST[2][1]

Tuples

Create a vector of tuples

COMB = [("A",1), ("A",2), ("A",4), ("A",7),

("B",3), ("B",5),

("C",1), ("C",4), ("C",5)

]

Create a binary variable for each tuple

@variable(model, v[COMB], Bin)

Address variable with index ("B",5)

julia> v[("B",5)]

Dictionary

Create a dictionary (key, value)

Abbreviations = Dict([("ca.", "circa (approximately)"),

("cf.", "confer (compare to)"),

("e.g.", "exempli gratia (for example)"),

("etc.", "et cetera (and other things)"),

("i.e.", "id est (that is)")

])

Get the value for key "e.g."

julia> Abbreviations["e.g."]

"exempli gratia (for example)"

7

LiU/MAI/Optimization 2 januari 2023 Julia/JuMP quickguide

Example 1

This first example demonstrates how Julia/JuMP easily models a small problem. Consider
the following linear programming problem with four variables och three constraints.

min z = 8 · x1 + 14 · x2 + 12 · x3 + 20 · x4

s.t. x1 + 3 · x2 + 2 · x3 + 4 · x4 ≥ 122

7 · x1 + 6 · x2 + 6 · x3 + 2 · x4 ≤ 200

3 · x1 + x2 + 2 · x3 + x4 ≤ 50

x1 , x2 , x3 , x4 ≥ 0

In Julia/JuMP, the corresponding model looks like this:

#---

Example 1

#---

Load packages

using JuMP, HiGHS

Create a model object LP, and use HiGHS as solver

LP = Model(HiGHS.Optimizer)

Define variables

@variable(LP, x1 >= 0)

@variable(LP, x2 >= 0)

@variable(LP, x3 >= 0)

@variable(LP, x4 >= 0)

Define the objective function (minimization problem)

@objective(LP, Min, 8*x1 + 14*x2 + 12*x3 + 20*x4)

Define the constraints

@constraint(LP, con1, x1 + 3*x2 + 2*x3 + 4*x4 >= 122)

@constraint(LP, con2, 7*x1 + 6*x2 + 6*x3 + 2*x4 <= 200)

@constraint(LP, con3, 3*x1 + x2 + 2*x3 + x4 <= 50)

Display defined problem

println("Model for Example 1:")

print(LP)

Solve the optimization problem

solution = optimize!(LP)

Print solution

println("Optimal Solution x*:")

println("x1 = $(value.(x1))")

println("x2 = $(value.(x2))")

println("x3 = $(value.(x3))")

println("x4 = $(value.(x4))")

println("Optimal objective value:\n $(objective_value(LP))")

8

LiU/MAI/Optimization 2 januari 2023 Julia/JuMP quickguide

Example 2

The problem in Example 1 can be written in a more general (compact) form

min z =
n∑

j=1

cj · xj

s.t.
n∑

j=1

aij · xj ≤ bi i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n

where the values of the parameters aij , bi and cj are defined according to the example.
Note that it is neccessary to negate all parameter values for the first constraint, since the
inequality (≤) must be the same for all constraints.

#---

Example 2

#---

Load packages

using JuMP, HiGHS

Parameters

c = [8 14 12 20]

a = [-1 -3 -2 -4 ;

7 6 6 2 ;

3 1 2 1]

b = [-122 200 50]

m = length(b) # number of constraints

n = length(c) # number of variables

Create a model object LP, and use HiGHS as solver

LP = Model(HiGHS.Optimizer)

Define variables

@variable(LP, x[1:n] >= 0)

Define the objective function (minimization problem)

@objective(LP, Min, sum(c[j]*x[j] for j in 1:n))

Define constraints (as <= constraints)

@constraint(LP, con[i in 1:m], sum(a[i,j]*x[j] for j in 1:n) <= b[i])

Display defined problem

println("Model for Example 2:")

print(LP)

Solve the optimization problem

solution = optimize!(LP)

Print solution

println("Optimal solution:\n ", value.(x))

println("Optimal objective value:\n $(objective_value(LP))")

9

LiU/MAI/Optimization 2 januari 2023 Julia/JuMP quickguide

Example 3

Another example, here with a double summation and variables with multiple indices.

min z =
∑
k∈K

ck · yk

s.t.
∑
i∈I

∑
j∈J

xijk = L k ∈ K

xijk ≤ Myk i ∈ I, j ∈ J, k ∈ K

xijk ∈ Z+ i ∈ I, j ∈ J, k ∈ K

yk ∈ {0, 1} k ∈ K

#---

Example 3

#---

Load packages

using JuMP, HiGHS

Parameters

c = [8 14 12]

I = [1 2 3 4 5]

J = [1 2 3 4 5 6 7]

K = [1 2 3]

L = 100

M = 20

Create a model object MIP, and use HiGHS as solver

MIP = Model(HiGHS.Optimizer)

Define variables

@variable(MIP, x[I,J,K] >= 0, Int)

@variable(MIP, y[K], Bin)

Define the objective function (minimization problem)

@objective(MIP, Min, sum(c[k]*y[k] for k in K))

Constraints

@constraint(MIP, con1[k in K], sum(x[i,j,k] for i in I, j in J) == L)

@constraint(MIP, con2[i in I, j in J, k in K], x[i,j,k] <= M*y[k])

Display defined problem

println("Model for Example 3:")

print(MIP)

Solve the optimization problem

solution = optimize!(MIP)

Print solution

println("Optimal solution:")

println("x* =\n" , value.(x))

println("y* =\n" , value.(y))

println("Optimal objective value:\n $(objective_value(MIP))")

10

LiU/MAI/Optimization 2 januari 2023 Julia/JuMP quickguide

Example 4

A non-linear problem

max f =
m∑
i=1

pixi

s.t.
m∑
i=1

aix
2
i ≤ K

0 ≤ xi ≤ 500− 0.1 · pi i = 1, . . . ,m

100 ≤ pi ≤ 900 i = 1, . . . ,m

#---

Example 4

#---

Load packages

using JuMP, Ipopt

Parameters

a = [4 1 2 2 1 4 2 3 2]

K = 2000

m = length(a)

Create a model object NLP (Non-Linear Problem), and use Ipopt as solver

NLP = Model(Ipopt.Optimizer)

Define variables

@variable(NLP, 100 <= p[1:m] <= 900) # p - sales price for product i

@variable(NLP, x[1:m] >= 0) # x - production of product i

Non-Linear objective (maximization problem)

@NLobjective(NLP, Max, sum(p[i] * x[i] for i in 1:m))

Non-Linear constraint

@NLconstraint(NLP, con_capacity, sum(a[i]*x[i]^2 for i = 1:m) <= K)

Linear constraint

@constraint(NLP, con_limit[i in 1:m], x[i] <= 100 - 0.1*p[i])

Display defined problem

println("Model for Example 4:")

print(NLP)

Solve the optimization problem

solution = optimize!(NLP)

Print solution

println("Optimal solution:")

println("p* =\n" , value.(p))

println("x* =\n" , value.(x))

println("Optimal objective value:\n $(objective_value(NLP))")

11

