
6FMAI19 Nonlinear Optimization Spring, 2022

Lecture #10 — 30/3, 2022
Lecturer: Yura Malitsky Scribe: Daniel Arnström

1 Proximal operators
We will now introduce the concept of proximal operators, which will motivate new methods
and, in some sense, generalize previous discussions about, for example, projections.

Definition 1 (Proximal operator). For a convex function f : Rn → Rn ∪ {∞} we define its
proximal operator proxf : Rn → Rn through the rule

proxf (x) , arg min
u

{
f(u) + 1

2‖u− x‖
2
}
, (1)

for any x ∈ Rn.

The defining rule of proxf in (1) is well-defined since f convex implies that f(u)+ 1
2‖u−x‖

2

is strongly convex, which ensures that proxf (x) exists and is unique (i.e., is single-valued).
Calling it a proximal operator originates from the term 1

2‖u − x‖22 forcing u to be in the
proximity of x.

1.1 Canonical examples

To build some intuition for proxf we give two canonical examples: First we consider the case
when f is a quadratic, which highlights the regularizing properties of proxf ; then we consider
the case when f is an indicator function, which highlights the projective properties of proxf .

Example 1: Consider the convex quadratic function f(x) = 1
2〈x,Qx〉+ 〈b, x〉, that is, Q is

psd. In this case its proximal operator takes the closed form

proxf (x) = arg min
u

{1
2〈u,Qu〉+ 〈b, u〉+ 1

2‖u− x‖
2
2

}
= arg min

u

{1
2〈u, (Q+ I)u〉+ 〈b− x, u〉

}
= (I +Q)−1(x− b),

(2)

where we have used that ‖u − x‖22 = ‖u‖22 + ‖x‖2 − 2〈x, u〉 in the second equality, and that
(I +Q)−1 exists in the third equality since Q � 0 =⇒ (I +Q) � 0.

Example 2: Consider the indicator function f(x) = δC(x) =
{

0 if x ∈ C
∞ if x /∈ C

, where C is a

closed and convex set. In this case the proximal operator becomes a projection:

proxf (u) = arg min
u

{
δC(u) + 1

2‖u− x‖
2
2

}
= arg min

u∈C

{1
2‖u− x‖

2
2

}
= PC(x).

(3)

1

1.2 Equivalent characterizations

Theorem 2 (Equivalent charcterizations of proxf). Let f : Rn → R ∪ {∞} be convex and
closed. Then the following are equivalent:

(i) u = proxf (x)

(ii) x ∈ (I + ∂f)u

(iii) 〈u− x, y − u〉 ≥ f(u)− f(y) ∀y

Proof. (i) =⇒ (ii): Using the definition of proxf and Fermat’s rule (i.e., that 0 ∈ ∂φ(x) is a
necessary and sufficient condition for x to be the minimizer to a convex function φ) yields

0 ∈ ∂(f(u) + 1
2‖u− x‖

2
2) = ∂f(u) + u− x = (I + ∂f)u− x⇔ x ∈ (I + ∂f)u. (4)

(ii)⇔ (iii): Rewriting (ii) as x− u ∈ ∂f and using the subgradient inequality yields

f(y) ≥ f(u) + 〈x− u, y − u〉, ∀y ⇔ 〈u− x, y − u〉 ≥ f(u)− f(y), ∀y (5)

Note that property (ii) can alternatively be written as proxf (x) = (I + ∂f)−1x, which is
similar to the closed-form derived in Example 1 for a quadratic function.

2 The proximal point algorithm
Proximal operators can be used to derive a simple algorithm for solving minx f(x):

Algorithm 1 The proximal point algorithm (PPA)
Input: x0, rule for selecting αk > 0
Output: ≈ x∗

1: k ← 0
2: repeat
3: xk+1 ← proxαkf

(xk).
4: k ← k + 1
5: until termination criterion satisfied

Note that although Algorithm 1 is simple to formulate, proxf is generally difficult to
evaluate for an arbitrary f .

If f is differentiable, it follows from (ii) in Theorem 2 that an iteration in Algorithm 1
takes the form

xk+1 = xk − αk∇f(xk+1). (6)

This is reminiscent of an iteration in gradient descent, except that the gradient is evaluated
in xk+1 rather than in xk, making (6) an implicit rule. For those familiar with integration of
differential equations, this is analogous to the forward Euler method (GD) vs the backward
Euler method (PPA).

2

2.1 Convergence

Before deriving the convergence rate of Algorithm 1, we show that it is a descent method.

Lemma 3 (Descent in PPA). If α > 0 in Algorithm 1, the iterates are monotonically de-
creasing w.r.t. to f . That is, f(xk+1) ≤ f(xk).

Proof. By letting xk+1 = proxαkf
(xk) and y = xk in the inequality (iii) in Theorem 2 we get

〈xk+1 − xk, xk − xk+1〉 ≥ αk(f(xk+1)− f(xk)) ⇔
−‖xk+1 − xk‖22 ≥ αk(f(xk+1)− f(xk)) ⇔

f(xk+1)− f(xk) ≤
‖xk+1 − xk‖22

αk
≤ 0,

(7)

where we, in fact, have strict descent if xk+1 6= xk, i.e., if xk is not a fixed-point to proxαkf
.

The strict descent in PPA as long as xk is not a fixed-point motivates the common termi-
nation rule of terminating when xk+1 ≈ xk.

We are now ready to derive the converge rate for Algorithm 1.

Theorem 4 (Convergence of PPA). Let f : Rn → R be convex and closed and denote
x∗ ∈ arg minx f(x) and f∗ = f(x∗). Then the iterates in Algorithm 1 satisfy

f(xk+1)− f∗ ≤
‖x0 − x∗‖22
2
∑k
i=0 αi

. (8)

Proof. By letting xk+1 = proxαkf
(xk) and y = x∗ in inequality (iii) in Theorem 2 we get

〈xk+1 − xk, x∗ − xk+1〉 ≥ αk(f(xk+1)− f∗) (9)

Using the identity 〈a, b〉 = 1
2‖a+ b‖22 − 1

2‖a‖
2
2 − 1

2‖b‖
2
2 and reordering terms yield

1
2‖xk+1 − x∗‖22 + αk(f(xk+1)− f∗) + 1

2‖xk+1 − xk‖22 ≤
1
2‖xk − x

∗‖22. (10)

Since ‖xk+1−xk‖22 ≥ 0 we get 1
2‖xk+1−x∗‖22+αk(f(xk+1)−f∗) ≤ 1

2‖xk−x
∗‖22, and telescoping

this inequality from iteration 0 to iteration k gives
k∑
i=0

αi(f(xi+1 − f∗)) ≤
1
2‖x0 − x∗‖22. (11)

Finally, from the descent property in Lemma 3 we have that f(xk+1) ≤ f(xi+1) for all i ≤ k.
Hence, we have that (f(xk+1)− f∗)

∑k
i=0 αi ≤

∑k
i=0 αi(f(xi+1)− f∗), which inserted into (11)

yields

f(xk+1)− f∗ ≤
‖x0 − x∗‖22
2
∑k
i=0 αi

. (12)

At a first glance, the result in Theorem 4 seem to imply that the rate of convergence can
be arbitrary fast by letting αk →∞. Theoretically, this is correct, although closer inspection
reveals practical limitations. By assuming that αk > 0 we get that xk+1 in PPA is given by

xk+1 = proxαkf
(xk) = arg min

u

{
αkf(u) + 1

2‖u− xk‖
2
2

}
= arg min

u

{
f(u) + 1

2αk
‖u− xk‖22

}
Hence, if αk → ∞, evaluating proxαkf

becomes equivalent to solving the original problem
minx f(x). There is, hence, a trade-off in the selection αk: a larger αk leads to faster conver-
gence but harder inner subproblems (since they becomes less regularized).

3

2.2 The proximal gradient method

The PPA is seldom applied in practice directly since evaluating proxf for an arbitrary f is
difficult. A related method that more often finds practical application is the proximal gradient
method (PGM), which works on problems where the objective function can be split into to
two parts as

min
x
f(x) + g(x), (13)

where f : Rn → R ∪ {∞} is closed, convex and smooth and g : Rn → R ∪ {∞} is convex and
"prox-friendly", in the sense that proxg is easy to evaluate. The PGM is outlined below.

Algorithm 2 The proximal gradient method (PGM)
Input: x0, rule for selecting αk > 0
Output: ≈ x∗

1: k ← 0
2: repeat
3: xk+1 = proxαkg

(xk − αk∇f(xk))
4: k ← k + 1
5: until termination criterion satisfied

When g is an indicator function for a closed and convex set C, i.e., g = δC(x), Algorithm 2
simply becomes projected gradient descent. Another important example of when PGM is used
is when a term containing ‖ · ‖1 is added to the objective function to obtain sparse solutions:

Example 3: Consider the minimization problem (sometimes called a "Lasso-regularized"
least-squares problem)

min
x

1
2‖Ax− b‖

2
2 + λ‖x‖1, (14)

where A ∈ Rm×n, b ∈ Rm and λ > 0. By letting f(x) , 1
2‖Ax − b‖

2
2 and g(x) , λ‖x‖1, the

proximal operator for g takes the closed-form

[proxg(x)]i = sign([x]i) max{|[x]i| − λ, 0}, (15)

where [·]i denotes the ith component of a vector. Applying Algorithm 2 to solve (14), hence,
results in an iteration consisting of a gradient step with f followed by a soft thresholding
according to (15).

4

	Proximal operators
	Canonical examples
	Equivalent characterizations

	The proximal point algorithm
	Convergence
	The proximal gradient method

