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Lecture #12 — 13/4, 2022
Lecturer: Yura Malitsky Scribe: Aban Husain

1 L-smooth functions and strong convexity

Unless otherwise specified, X is a finite dimensional R-vector space equipped with p-norm
- 1l-

Definition 1. The dual space X* of X is the space of linear forms on X with norm || - ||«

defined by
[fll« = max f(z).

llzfl=1

As X is assumed to be finite dimensional, there is a natural equivalence between X and
X* ie. X* is an R-vector space of the same dimension as X.

Remark 2. For X with norm || - ||p, the dual norm is || - ||, where % + % =1 forp>1, and
q = oo for p=1. In particular, if X has Fuclidean norm, then so does X*.

Recall that, for an arbitrary function f : X — R, the Legendre-Fenchel transform (or
complex conjugate) f*: X* — R can be constructed as:

f(y) = sup{{y, z) — f(2)}.

zeX

Consider the negative entropy function on the n-simplex

h(z) = {2?:1 zilogz; ifx €A, ={z R Yz =1}

00 else.

Then by straightforward calculation

h*(y) = sup{(y, z) — h(x)}

zeX
n
= sup {(y,z) — > _x;logz;}
TEA, i=1

=log() _expy;).

i=1
1.1 L-smooth functions
The definition of L-smooth functions can be generalized to X with an unspecified p-norm.
Definition 3. A differentiable function f : X — R is L-smooth with respect to a norm || - || if
IVf(y) = V@)« < Llly — ||, Yo,y € X.

Theorem 4. Let f: X — R be convex, and L > 0. Then the following are equivalent for all
z,y € X and X € [0,1]:

1. f is L-smooth with respect to || - ||;



2. fy) < f(@) +(Vf(2),y —2) + Sy — |%;

3. fly) = f(z) = (Vf(x),y —z) > 5 |VF(@) = V)%

4 AV f(@) = Vi), x—y) > HIVI() - V)%

5. fa+(1=XNy) > Af(@) + (1 =N fly) = EA1 = Nllz —y|*.

Proof. (1) = (2) Let zy = z + A(y — z) for X\ € [0,1]. Using the fundamental theorem of
calculus and Holder’s inequality:

F) = £@) ~ (V7@ —2) = [ (5(ex) = V(@) y - ) i
< [ 195 - 9@y — ol i
1
< [ LAl =l ax

L 2
= 2y~ all>.

(2) = (3) For fixed z € X let

o) = fly) — flz) = (Vf(2),y — 2).

From definition V(y) = Vf(y)—V f(z), and by convexity, ¢(x) = 0 is a minimum value. For

yEX,setz:yf%

Then

v where v is chosen so that (Vo(y),v) = ||[Ve(y)|l« and |v|| = 1.

0 < (2)

Ve (y)ll«

= o0) — (Voly), IV EWeyy o 2y VDo

EH L
= fly) — f(z) = (Vf(z),y —x) - %I!Vf(y) — V()2

(3) = (4) For each z,y € X,

F) = £&) = (Vi@)y —2) > 5= IV 5 @)~ VI
£(@) ~ 7o) — (V)2 —9) > 5|V () ~ Vi@

Summation yields (4).
(4) = (1) Using Holder’s inequality,

%IIVf(w) ~VIWIE <(VF@) = Vy),z—y) < V@) = Vi) -yl

(2) = (5) This follows from the definition of convexity and the inequality in (2).
(5) = (2) Rewrite (5) as
fle+ My =) = f(z)  LO=N

fly) < f(z)+ X + =y —=|*

The limit as A — 0 results in (2).



Claim 5. The function f(z) =log(}i—, expx;) is 1-smooth with respect to || - ||2 and || - ||co-

The first and second order partial derivatives of f are

" —erieti (37 eon)? if i # §
of | 72 etie /(2 err)?, i
(@) =e"/()_ "), () = i n
aﬂfi k;l 81‘18.%] _exiea:i/(z exk)2 + ea:z/( Z exk) if i = ]
i=k k=1

Fix the notation o = Vf(x) and V2f(z) = diag(c) — ool

1. In the case of Euclidean norm, L is bounded by the largest eigenvalue of the Hessian.
By Weyl’s inequality V2f(z) < diag(o) < I, so f is 1-smooth with respect to || - 2.

2. Given || - ||oo, for any d € R the inequality (V2f(z),d) < (diag(c),d) < ||d||s holds.
Since f is twice continuously differentiable, for z,y € R there exists some z € [z, y| such
that

Fl) = F@) + (Y f(@)oy — ) + 3 (VT )y — o)y )
< @)+ (V1@ y—2) + Gl — vl

By 4, f is 1-smooth with respect to || - ||oo-

1.2 p-strongly convex functions
The definition of strongly convex functions can also be generalized.

Definition 6. A function f : X — R is p-strongly convex wrt. || - || if for all z,y € X and
Ae0,1]:
(@) + (L= NF) 2 fOa+ 1= Ny) + ZAL =Ny — ]

It is important to note that the equivalence
f is p-strongly convex < f(x) — %HxHQ is convex

holds only in the Euclidean case.

Theorem 7. Let f: X — RU{oo}. The following are equivalent for all x,y € X :
1. f is p-strongly convex with respect to || - ||;
2. f(y) = f(@) +{ge,y — @) + Glly —2l*, Vg € 0f(2);
3. 9s = gysx —y) = pllz =yl Vgu € 9f(x),Ygy € O (y).

Proof. (1) = (2) Let ) = x + Ay — ), A € [0,1]. The definition of u-strong convexity can
be rewritten as
f(xx) — f(z)

1) 2 f@)+ 5= Mlly o) + S

Allowing A — 0,
) = f@) + Slly = ol + (Vfy-o(a)y — @)

> J(2)+ Slly = 2l + {ge,y — @) Voo € Of ().



(2)= (1) Forz,y e X and ) =2 + Ay —x), A € [0,1]:
() 2 MF (@) + (ga0y = 22} + 1y = 2a])

(L= NF@) = 1= NF@) + (gay 7 = 22) + Sl = 2.

Summation yields (1).
(2) = (3) Monotonicity follows immediately from (2).
(3) = (2) For A € [0,1], let ) = 2 + A(y — x). Given that f is convex, for g,, € df(xy),

fly) = f(z) = /01<9mmy—:n) d.

Since (guy, ¥ — ) > (gz,y — ) + pA||lz — y||?, (2) follows. O

2 Fenchel duality of L-smooth and strongly convex functions

In the last lecture, the following relations between subgradients of a function and its convex
conjugate were established.

Lemma 8. [Fenchel Young’s equality] For a proper, lower semicontinuous convex function
f: X =R, the following conditions are equivalent:

L f(x) + f*(y) = (y, 7);

2. x € 0f*(y);
3. yedf(x).
Theorem 9. Let f: X — R. The following statements hold:
1. If f is closed and p-strongly convex with respect to || - ||, then f* is is i-smooth with
respect to || - ||«;
2. If f is convex and L-smooth with respect to || - ||, then f* is is %—strongly convex with
respect to || - ||«-
Proof. Both statements are direct consequences of Fenchel Young, 4 and 7. 0

Claim 10. The negative entropy function h(x) on the n-simplex is 1-stronlgy convezx with
respect to both || - ||1 and || - ||2.

Since the complex conjuagate of h(z) is 1-smooth with respect to ||-||2 and |||/, 9 ensures
1-strong convexity with respect to the dual norms.



	L-smooth functions and strong convexity
	L-smooth functions
	-strongly convex functions

	Fenchel duality of L-smooth and strongly convex functions

