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1 L-smooth functions and strong convexity
Unless otherwise specified, X is a finite dimensional R-vector space equipped with p-norm
∥ · ∥.

Definition 1. The dual space X∗ of X is the space of linear forms on X with norm ∥ · ∥∗
defined by

∥f∥∗ = max
∥x∥=1

f(x).

As X is assumed to be finite dimensional, there is a natural equivalence between X and
X∗, i.e. X∗ is an R-vector space of the same dimension as X.

Remark 2. For X with norm ∥ · ∥p, the dual norm is ∥ · ∥q, where 1
p + 1

q = 1 for p > 1, and
q = ∞ for p = 1. In particular, if X has Euclidean norm, then so does X∗.

Recall that, for an arbitrary function f : X → R, the Legendre-Fenchel transform (or
complex conjugate) f∗ : X∗ → R can be constructed as:

f∗(y) = sup
x∈X

{⟨y, x⟩ − f(x)}.

Consider the negative entropy function on the n-simplex

h(x) =
{∑n

i=1 xi log xi if x ∈ ∆n = {x ∈ Rn|
∑n

i=1 xi = 1}
∞ else.

Then by straightforward calculation

h∗(y) = sup
x∈X

{⟨y, x⟩ − h(x)}

= sup
x∈∆n

{⟨y, x⟩ −
n∑

i=1
xi log xi}

= log(
n∑

i=1
exp yi).

1.1 L-smooth functions

The definition of L-smooth functions can be generalized to X with an unspecified p-norm.

Definition 3. A differentiable function f : X → R is L-smooth with respect to a norm ∥ · ∥ if

∥∇f(y) − ∇f(x)∥∗ ≤ L∥y − x∥, ∀x, y ∈ X.

Theorem 4. Let f : X → R be convex, and L > 0. Then the following are equivalent for all
x, y ∈ X and λ ∈ [0, 1]:

1. f is L-smooth with respect to ∥ · ∥;
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2. f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + L
2 ∥y − x∥2;

3. f(y) − f(x) − ⟨∇f(x), y − x⟩ ≥ 1
2L∥∇f(x) − ∇f(y)∥2

∗;

4. ⟨∇f(x) − ∇f(y), x − y⟩ ≥ 1
L∥∇f(x) − ∇f(y)∥2

∗;

5. f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y) − L
2 λ(1 − λ)∥x − y∥2.

Proof. (1) ⇒ (2) Let xλ = x + λ(y − x) for λ ∈ [0, 1]. Using the fundamental theorem of
calculus and Hölder’s inequality:

f(y) − f(x) − ⟨∇f(x), y − x⟩ =
∫ 1

0
⟨∇f(xλ) − ∇f(x), y − x⟩ dλ

≤
∫ 1

0
∥∇f(xλ) − ∇f(x)∥∗∥y − x∥ dλ

≤
∫ 1

0
Lλ∥y − x∥2 dλ

= L

2 ∥y − x∥2.

(2) ⇒ (3) For fixed x ∈ X let

φ(y) = f(y) − f(x) − ⟨∇f(x), y − x⟩.

From definition ∇φ(y) = ∇f(y)−∇f(x), and by convexity, φ(x) = 0 is a minimum value. For
y ∈ X, set z = y − ∥∇φ(y)∥∗

L v where v is chosen so that ⟨∇φ(y), v⟩ = ∥∇φ(y)∥∗ and ∥v∥ = 1.
Then

0 ≤ φ(z)

= φ(y) − ⟨∇φ(y), ∥∇φ(y)∥∗
L

v⟩ + L

2 ∥∥∇φ(y)∥∗
L

v∥2

= f(y) − f(x) − ⟨∇f(x), y − x⟩ − 1
2L

∥∇f(y) − ∇f(x)∥2
∗.

(3) ⇒ (4) For each x, y ∈ X,

f(y) − f(x) − ⟨∇f(x), y − x⟩ ≥ 1
2L

∥∇f(x) − ∇f(y)∥2
∗

f(x) − f(y) − ⟨∇f(y), x − y⟩ ≥ 1
2L

∥∇f(y) − ∇f(x)∥2
∗

Summation yields (4).
(4) ⇒ (1) Using Hölder’s inequality,

1
L

∥∇f(x) − ∇f(y)∥2
∗ ≤ ⟨∇f(x) − ∇f(y), x − y⟩ ≤ ∥∇f(x) − ∇f(y)∥∗∥x − y∥.

(2) ⇒ (5) This follows from the definition of convexity and the inequality in (2).
(5) ⇒ (2) Rewrite (5) as

f(y) ≤ f(x) + f(x + λ(y − x)) − f(x)
λ

+ L(1 − λ)
2 ∥y − x∥2.

The limit as λ → 0 results in (2).
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Claim 5. The function f(x) = log(
∑n

i=1 exp xi) is 1-smooth with respect to ∥ · ∥2 and ∥ · ∥∞.

The first and second order partial derivatives of f are

∂f

∂xi
(x) = exi/(

n∑
k=1

exk), ∂f2

∂xi∂xj
(x) =


−exiexj /(

n∑
i=k

exk)2, if i ̸= j

−exiexi/(
n∑

i=k
exk)2 + exi/(

n∑
k=1

exk) if i = j.

Fix the notation σ = ∇f(x) and ∇2f(x) = diag(σ) − σσT .

1. In the case of Euclidean norm, L is bounded by the largest eigenvalue of the Hessian.
By Weyl’s inequality ∇2f(x) ≼ diag(σ) ≼ I, so f is 1-smooth with respect to ∥ · ∥2.

2. Given ∥ · ∥∞, for any d ∈ R the inequality ⟨∇2f(x), d⟩ ≤ ⟨diag(σ), d⟩ ≤ ∥d∥∞ holds.
Since f is twice continuously differentiable, for x, y ∈ R there exists some z ∈ [x, y] such
that

f(y) = f(x) + ⟨∇f(x), y − x⟩ + 1
2⟨∇2f(z)(y − x), y − x⟩

≤ f(x) + ⟨∇f(x), y − x⟩ + 1
2∥x − y∥∞.

By 4, f is 1-smooth with respect to ∥ · ∥∞.

1.2 µ-strongly convex functions

The definition of strongly convex functions can also be generalized.

Definition 6. A function f : X → R is µ-strongly convex wrt. ∥ · ∥ if for all x, y ∈ X and
λ ∈ [0, 1]:

λf(x) + (1 − λ)f(y) ≥ f(λx + (1 − λ)y) + µ

2 λ(1 − λ)∥y − x∥2.

It is important to note that the equivalence

f is µ-strongly convex ⇔ f(x) − µ

2 ∥x∥2 is convex

holds only in the Euclidean case.

Theorem 7. Let f : X → R ∪ {∞}. The following are equivalent for all x, y ∈ X:

1. f is µ-strongly convex with respect to ∥ · ∥;

2. f(y) ≥ f(x) + ⟨gx, y − x⟩ + µ
2 ∥y − x∥2, ∀gx ∈ ∂f(x);

3. ⟨gx − gy, x − y⟩ ≥ µ∥x − y∥2, ∀gx ∈ ∂f(x), ∀gy ∈ ∂f(y).

Proof. (1) ⇒ (2) Let xλ = x + λ(y − x), λ ∈ [0, 1]. The definition of µ-strong convexity can
be rewritten as

f(y) ≥ f(x) + µ

2 (1 − λ)∥y − x∥2 + f(xλ) − f(x)
λ

.

Allowing λ → 0,

f(y) ≥ f(x) + µ

2 ∥y − x∥2 + ⟨∇fy−x(x), y − x⟩

≥ f(x) + µ

2 ∥y − x∥2 + ⟨gx, y − x⟩ ∀gx ∈ ∂f(x).
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(2) ⇒ (1) For x, y ∈ X and xλ = x + λ(y − x), λ ∈ [0, 1]:

λf(y) ≥ λ(f(xλ) + ⟨gxλ
, y − xλ⟩ + µ

2 ∥y − xλ∥2)

(1 − λ)f(x) ≥ (1 − λ)(f(xλ) + ⟨gxλ
, x − xλ⟩ + µ

2 ∥x − xλ∥2).

Summation yields (1).
(2) ⇒ (3) Monotonicity follows immediately from (2).
(3) ⇒ (2) For λ ∈ [0, 1], let xλ = x + λ(y − x). Given that f is convex, for gxλ

∈ ∂f(xλ),

f(y) − f(x) =
∫ 1

0
⟨gxλ

, y − x⟩ dλ.

Since ⟨gxλ
, y − x⟩ ≥ ⟨gx, y − x⟩ + µλ∥x − y∥2, (2) follows.

2 Fenchel duality of L-smooth and strongly convex functions
In the last lecture, the following relations between subgradients of a function and its convex
conjugate were established.

Lemma 8. [Fenchel Young’s equality] For a proper, lower semicontinuous convex function
f : X → R, the following conditions are equivalent:

1. f(x) + f∗(y) = ⟨y, x⟩;

2. x ∈ ∂f∗(y);

3. y ∈ ∂f(x).

Theorem 9. Let f : X → R. The following statements hold:

1. If f is closed and µ-strongly convex with respect to ∥ · ∥, then f∗ is is 1
µ -smooth with

respect to ∥ · ∥∗;

2. If f is convex and L-smooth with respect to ∥ · ∥, then f∗ is is 1
L -strongly convex with

respect to ∥ · ∥∗.

Proof. Both statements are direct consequences of Fenchel Young, 4 and 7.

Claim 10. The negative entropy function h(x) on the n-simplex is 1-stronlgy convex with
respect to both ∥ · ∥1 and ∥ · ∥2.

Since the complex conjuagate of h(x) is 1-smooth with respect to ∥·∥2 and ∥·∥∞, 9 ensures
1-strong convexity with respect to the dual norms.
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