Spring, 2022

Lecture #12 - 13/4, 2022

Lecturer: Yura Malitsky

Scribe: Aban Husain

1 L-smooth functions and strong convexity

Unless otherwise specified, X is a finite dimensional \mathbb{R} -vector space equipped with p-norm $\|\cdot\|$.

Definition 1. The dual space X^* of X is the space of linear forms on X with norm $\|\cdot\|_*$ defined by

$$||f||_* = \max_{||x||=1} f(x).$$

As X is assumed to be finite dimensional, there is a natural equivalence between X and X^* , i.e. X^* is an \mathbb{R} -vector space of the same dimension as X.

Remark 2. For X with norm $\|\cdot\|_p$, the dual norm is $\|\cdot\|_q$, where $\frac{1}{p} + \frac{1}{q} = 1$ for p > 1, and $q = \infty$ for p = 1. In particular, if X has Euclidean norm, then so does X^* .

Recall that, for an arbitrary function $f : X \to \mathbb{R}$, the **Legendre-Fenchel transform** (or complex conjugate) $f^* : X^* \to \mathbb{R}$ can be constructed as:

$$f^*(y) = \sup_{x \in X} \{ \langle y, x \rangle - f(x) \}.$$

Consider the negative entropy function on the n-simplex

$$h(x) = \begin{cases} \sum_{i=1}^{n} x_i \log x_i & \text{if } x \in \Delta_n = \{ x \in \mathbb{R}^n | \sum_{i=1}^{n} x_i = 1 \} \\ \infty & \text{else.} \end{cases}$$

Then by straightforward calculation

$$h^*(y) = \sup_{x \in X} \{ \langle y, x \rangle - h(x) \}$$
$$= \sup_{x \in \Delta_n} \{ \langle y, x \rangle - \sum_{i=1}^n x_i \log x_i \}$$
$$= \log(\sum_{i=1}^n \exp y_i).$$

1.1 L-smooth functions

The definition of *L*-smooth functions can be generalized to *X* with an unspecified *p*-norm. **Definition 3.** A differentiable function $f: X \to \mathbb{R}$ is *L*-smooth with respect to a norm $\|\cdot\|$ if

$$\|\nabla f(y) - \nabla f(x)\|_* \le L \|y - x\|, \ \forall x, y \in X.$$

Theorem 4. Let $f : X \to \mathbb{R}$ be convex, and L > 0. Then the following are equivalent for all $x, y \in X$ and $\lambda \in [0, 1]$:

1. f is L-smooth with respect to $\|\cdot\|$;

2. $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2;$ 3. $f(y) - f(x) - \langle \nabla f(x), y - x \rangle \geq \frac{1}{2L} ||\nabla f(x) - \nabla f(y)||_*^2;$ 4. $\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq \frac{1}{L} ||\nabla f(x) - \nabla f(y)||_*^2;$ 5. $f(\lambda x + (1 - \lambda)y) \geq \lambda f(x) + (1 - \lambda)f(y) - \frac{L}{2}\lambda(1 - \lambda)||x - y||^2.$

Proof. (1) \Rightarrow (2) Let $x_{\lambda} = x + \lambda(y - x)$ for $\lambda \in [0, 1]$. Using the fundamental theorem of calculus and Hölder's inequality:

$$\begin{aligned} f(y) - f(x) - \langle \nabla f(x), y - x \rangle &= \int_0^1 \langle \nabla f(x_\lambda) - \nabla f(x), y - x \rangle \, d\lambda \\ &\leq \int_0^1 \| \nabla f(x_\lambda) - \nabla f(x) \|_* \| y - x \| \, d\lambda \\ &\leq \int_0^1 L\lambda \| y - x \|^2 \, d\lambda \\ &= \frac{L}{2} \| y - x \|^2. \end{aligned}$$

 $(2) \Rightarrow (3)$ For fixed $x \in X$ let

$$\varphi(y) = f(y) - f(x) - \langle \nabla f(x), y - x \rangle.$$

From definition $\nabla \varphi(y) = \nabla f(y) - \nabla f(x)$, and by convexity, $\varphi(x) = 0$ is a minimum value. For $y \in X$, set $z = y - \frac{\|\nabla \varphi(y)\|_*}{L}v$ where v is chosen so that $\langle \nabla \varphi(y), v \rangle = \|\nabla \varphi(y)\|_*$ and $\|v\| = 1$. Then

$$0 \le \varphi(z)$$

= $\varphi(y) - \langle \nabla \varphi(y), \frac{\|\nabla \varphi(y)\|_*}{L}v \rangle + \frac{L}{2} \|\frac{\|\nabla \varphi(y)\|_*}{L}v\|^2$
= $f(y) - f(x) - \langle \nabla f(x), y - x \rangle - \frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|_*^2$

 $(3) \Rightarrow (4)$ For each $x, y \in X$,

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle \ge \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|_*^2$$

$$f(x) - f(y) - \langle \nabla f(y), x - y \rangle \ge \frac{1}{2L} \| \nabla f(y) - \nabla f(x) \|_*^2$$

Summation yields (4).

 $(4) \Rightarrow (1)$ Using Hölder's inequality,

$$\frac{1}{L} \|\nabla f(x) - \nabla f(y)\|_*^2 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle \le \|\nabla f(x) - \nabla f(y)\|_* \|x - y\|.$$

 $(2) \Rightarrow (5)$ This follows from the definition of convexity and the inequality in (2). (5) \Rightarrow (2) Rewrite (5) as

$$f(y) \le f(x) + \frac{f(x + \lambda(y - x)) - f(x)}{\lambda} + \frac{L(1 - \lambda)}{2} ||y - x||^2$$

The limit as $\lambda \to 0$ results in (2).

L	_	_	_	_	

Claim 5. The function $f(x) = \log(\sum_{i=1}^{n} \exp x_i)$ is 1-smooth with respect to $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$.

The first and second order partial derivatives of f are

$$\frac{\partial f}{\partial x_i}(x) = e^{x_i} / (\sum_{k=1}^n e^{x_k}), \quad \frac{\partial f^2}{\partial x_i \partial x_j}(x) = \begin{cases} -e^{x_i} e^{x_j} / (\sum_{i=k}^n e^{x_k})^2, & \text{if } i \neq j \\ -e^{x_i} e^{x_i} / (\sum_{i=k}^n e^{x_k})^2 + e^{x_i} / (\sum_{k=1}^n e^{x_k}) & \text{if } i = j. \end{cases}$$

Fix the notation $\sigma = \nabla f(x)$ and $\nabla^2 f(x) = \text{diag}(\sigma) - \sigma \sigma^T$.

- 1. In the case of Euclidean norm, L is bounded by the largest eigenvalue of the Hessian. By Weyl's inequality $\nabla^2 f(x) \preccurlyeq \operatorname{diag}(\sigma) \preccurlyeq I$, so f is 1-smooth with respect to $\|\cdot\|_2$.
- 2. Given $\|\cdot\|_{\infty}$, for any $d \in \mathbb{R}$ the inequality $\langle \nabla^2 f(x), d \rangle \leq \langle \operatorname{diag}(\sigma), d \rangle \leq \|d\|_{\infty}$ holds. Since f is twice continuously differentiable, for $x, y \in \mathbb{R}$ there exists some $z \in [x, y]$ such that

$$f(y) = f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \nabla^2 f(z)(y - x), y - x \rangle$$

$$\leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} ||x - y||_{\infty}.$$

By 4, f is 1-smooth with respect to $\|\cdot\|_{\infty}$.

1.2 μ -strongly convex functions

The definition of strongly convex functions can also be generalized.

Definition 6. A function $f : X \to \mathbb{R}$ is μ -strongly convex wrt. $\|\cdot\|$ if for all $x, y \in X$ and $\lambda \in [0,1]$:

$$\lambda f(x) + (1-\lambda)f(y) \ge f(\lambda x + (1-\lambda)y) + \frac{\mu}{2}\lambda(1-\lambda)\|y-x\|^2.$$

It is important to note that the equivalence

$$f$$
 is μ -strongly convex $\Leftrightarrow f(x) - \frac{\mu}{2} ||x||^2$ is convex

holds only in the Euclidean case.

Theorem 7. Let $f: X \to \mathbb{R} \cup \{\infty\}$. The following are equivalent for all $x, y \in X$:

- 1. f is μ -strongly convex with respect to $\|\cdot\|$;
- 2. $f(y) \ge f(x) + \langle g_x, y x \rangle + \frac{\mu}{2} ||y x||^2, \quad \forall g_x \in \partial f(x);$
- 3. $\langle g_x g_y, x y \rangle \ge \mu ||x y||^2, \quad \forall g_x \in \partial f(x), \forall g_y \in \partial f(y).$

Proof. (1) \Rightarrow (2) Let $x_{\lambda} = x + \lambda(y - x), \lambda \in [0, 1]$. The definition of μ -strong convexity can be rewritten as

$$f(y) \ge f(x) + \frac{\mu}{2}(1-\lambda)||y-x||^2 + \frac{f(x_{\lambda}) - f(x)}{\lambda}.$$

Allowing $\lambda \to 0$,

$$f(y) \ge f(x) + \frac{\mu}{2} ||y - x||^2 + \langle \nabla f_{y-x}(x), y - x \rangle$$

$$\ge f(x) + \frac{\mu}{2} ||y - x||^2 + \langle g_x, y - x \rangle \ \forall g_x \in \partial f(x).$$

(2) \Rightarrow (1) For $x, y \in X$ and $x_{\lambda} = x + \lambda(y - x), \ \lambda \in [0, 1]$:

$$\lambda f(y) \ge \lambda (f(x_{\lambda}) + \langle g_{x_{\lambda}}, y - x_{\lambda} \rangle + \frac{\mu}{2} \|y - x_{\lambda}\|^2)$$
$$(1 - \lambda) f(x) \ge (1 - \lambda) (f(x_{\lambda}) + \langle g_{x_{\lambda}}, x - x_{\lambda} \rangle + \frac{\mu}{2} \|x - x_{\lambda}\|^2)$$

Summation yields (1).

 $(2) \Rightarrow (3)$ Monotonicity follows immediately from (2).

(3) \Rightarrow (2) For $\lambda \in [0,1]$, let $x_{\lambda} = x + \lambda(y-x)$. Given that f is convex, for $g_{x_{\lambda}} \in \partial f(x_{\lambda})$,

$$f(y) - f(x) = \int_0^1 \langle g_{x_\lambda}, y - x \rangle \, d\lambda$$

Since $\langle g_{x_{\lambda}}, y - x \rangle \ge \langle g_x, y - x \rangle + \mu \lambda \|x - y\|^2$, (2) follows.

2 Fenchel duality of L-smooth and strongly convex functions

In the last lecture, the following relations between subgradients of a function and its convex conjugate were established.

Lemma 8. [Fenchel Young's equality] For a proper, lower semicontinuous convex function $f: X \to \mathbb{R}$, the following conditions are equivalent:

- 1. $f(x) + f^*(y) = \langle y, x \rangle;$
- 2. $x \in \partial f^*(y);$
- 3. $y \in \partial f(x)$.

Theorem 9. Let $f : X \to \mathbb{R}$. The following statements hold:

- 1. If f is closed and μ -strongly convex with respect to $\|\cdot\|$, then f^* is is $\frac{1}{\mu}$ -smooth with respect to $\|\cdot\|_*$;
- 2. If f is convex and L-smooth with respect to $\|\cdot\|$, then f^* is is $\frac{1}{L}$ -strongly convex with respect to $\|\cdot\|_*$.

Proof. Both statements are direct consequences of Fenchel Young, 4 and 7.

Claim 10. The negative entropy function h(x) on the n-simplex is 1-stronly convex with respect to both $\|\cdot\|_1$ and $\|\cdot\|_2$.

Since the complex conjugate of h(x) is 1-smooth with respect to $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$, 9 ensures 1-strong convexity with respect to the dual norms.