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1 Convex Sets
If a set X ⊂ Rn is convex, then for any two points in the set, all points on the straight line
between x and y will also be in X. Examples of convex sets are intervals on R, and the interior
of a circle in R2. Pictorially, sets can be represented as shapes as shown in Fig. 1, where it is
clear that X is convex, while X ′ is not.

Figure 1: Convex and non-convex sets.

The formal definition of a convex set follows.

Definition 1 (Convex Set). A set X ⊂ Rn is convex if for all x, y ∈ X, α ∈ [0, 1], it follows
that

αx + (1 − α)y ∈ X

Fig. 2 shows the intersection of three convex sets X1, X2 and X3. As one might expect,
the intersection of X1, X2 and X3 is also a convex set.

Figure 2: Intersection of three convex sets.
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Proposition 2 (Intersection of convex sets). Let X1, X2, . . . be convex sets, and

X =
∞⋂

i=1
Xi.

Then X is convex.

Proof. Assume X is non-convex. Then there exists x, y ∈ X such that for some α ∈ [0, 1],
αx+(1−α)y /∈ X. It follows that for at least one Xi, αx+(1−α)y /∈ Xi. However, x, y ∈ Xi,
and therefore Xi is non-convex, a contradiction.

2 Convex Functions
The convexity of functions is a property that resembles convexity of sets. If a function
f : R → R is convex, then we can pick any two points x, y ∈ R, and the straight line between
f(x) and f(y) will lie above the curve of the function. Two functions are shown in Fig. 3.
Clearly, f is convex while g is not.

Figure 3: A convex and non-convex function.

A convex function only makes sense if its domain is a convex set. This property is included
in its definition.

Definition 3 (Convex function). Let X ⊂ Rn be a convex set. The function f : X → R is
convex if for all x, y ∈ X, α ∈ [0, 1], it follows that

αf(x) + (1 − α)f(y) ≥ f(αx + (1 − α)y)

Note that, in Fig. 3, the left hand side of the inequality in Def. 3 corresponds to the
straight line between f(x) and f(y), while the right hand side is the function applied to the
interval [x, y].

The epigraph of a function f , denoted by epi f , is the set of ordered pairs (x, y) such that
y ≥ f(x), x ∈ X, y ∈ R. If X is the domain of f , then epi f ⊂ X × R. The epigraph of an
example function f : [x1, x2] → R is shown in Fig. 4. It is clear that neither the function f
nor the set epi f is convex. It turns out that these properties are equivalent.

Proposition 4 (Equivalence of convex functions and epigraphs). Let X ⊂ Rn be a convex
set. f : X → R is a convex function if and only if the epigraph of f is a convex set.
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Figure 4: The epigraph of a function.

Proof. Let x, y ∈ X, α ∈ [0, 1].

epi f is a convex set ⇔
α(x, f(x)) + (1 − α)(y, f(y)) = (αx + (1 − α)y, αf(x) + (1 − α)f(y)) ⊂ epi f ⇔
αf(x) + (1 − α)f(y) ≥ f(αx + (1 − α)y) ⇔
f is a convex function

There are certain combinations of convex functions that are also convex. Addition of
convex functions has a simple proof.

Proposition 5 (Addition of convex functions). If f1, f2, . . . fn are convex functions on some
common convex domain X. Then f : X → R given by f(x) = f1(x) + f2(x) + · · · + fn(x) is
convex.

Proof. If f1, f2 . . . fn are convex functions, then for all x, y ∈ X, α ∈ [0, 1] we have

αfi(x) + (1 − α)fi(y) ≥ fi(αx + (1 − α)y)

It follows that
n∑

i=1
[αfi(x) + (1 − α)fi(y)] ≥

n∑
i=1

fi(αx + (1 − α)y) =⇒

α
n∑

i=1
fi(x) + (1 − α)

n∑
i=1

fi(y) ≥
n∑

i=1
fi(αx + (1 − α)y) =⇒

αf(x) + (1 − α)f(y) ≥ f(αx + (1 − α)y)

Another case is the supremum of several convex functions.

Proposition 6 (Supremum of convex functions). If f1, f2 . . . fn are convex functions, then
f = sup{f1, f2 . . . fn} is convex.
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Proof. If f1, f2 . . . fn are convex functions, then their epigraphs are convex sets. The epigraph
of f is

epi f =
n⋂

i=1
epi fi,

and by Prop. 2, epi f is convex. Therefore f is a convex function.

There is a geometric intution to the proof given in Fig. 5.

Figure 5: Intersection of epigraphs and supremum of functions.

Developing the notion of convexity required some work, but the effort is justified by the
next theorem. Two definitions precede it.

Definition 7 (Local minimum and minimum point). Let x ∈ X, and f : X → R. x is
a local minimum point if there exists a neighborhood N of x such that y ∈ N implies that
f(x) ≤ f(y). If x ∈ X is a local minimum point, then f(x) is a local minimum.

Definition 8 (Global minimum and minimum point). If x ∈ X is a local minimum point of
f : X → R, and its associated neighborhood N = X, then x is a global minimum point. If
x ∈ X is a global minimum point, then f(x) is a global minimum.

Theorem 9 (Minima of convex functions). If x ∈ X is a local minimum point of a convex
function f : X → R, then x is a global minimum point and f(x) is a global minimum.

Proof. Assume that there exists a point y ∈ X such that f(y) < f(x). Then, since f is
convex, we find that

∀α ∈ (0, 1), f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) < αf(x) + (1 − α)f(x) = f(x) (1)

Let αn ∈ (0, 1) define a sequence that converges to 1. Then there exists a number M ∈ N
such that, whenever n ≥ M ,

αnx + (1 − αn)y ∈ N,

where N is the neighborhood of x where f(x) is a minima. However, since f(αnx+(1−αn)y <
f(x), we arrive at a contradiction.

Another proposition concerns the set in X that minimizes a convex function.
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Proposition 10 (Minimizing set of a convex function). If f : X → R is a convex function,
then arg minx f(x) is a convex set.

Proof. Let x, y ∈ arg minx f(x). Then f(x) = f(y) = f∗. Since f is convex we also find that
for α ∈ [0, 1],

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) = f∗

So regardless of the value of α, the function f is minimized. This must mean that if α ∈ [0, 1],

αx + (1 − α)y ∈ arg min
x

f(x)

which is the definition of a convex set.

3 Differentiable Convex Functions
If we resttrict the investigation to functions that are differentiable, we find that there are
connections between the convexity and the gradient. First, we need some facts from differential
calculus.

Definition 11 (Differentiability). If D ⊂ Rn, the function f : D → R is said to be differen-
tiable at x0 ∈ D if

lim
x→x0

‖f(x) − (f(x0) + f ′(x0)(x − x0))‖
‖x − x0‖

= 0,

where the derivative f ′(x0) : Rn → R is a linear map.

It follows that if a function f is differentiable at some point x0, we can approximate the
function at another point x as

f(x) ≈ f(x0) + f ′(x0)(x − x0)

provided that x0 and x are sufficiently close.

Definition 12 (Directional derivative). If D ⊂ Rn, then the directional derivative of f : D →
R at x0 ∈ D, with respect to some vector v ∈ Rn, is

Dvf(x0) = lim
t→0

f(x0 + tv) − f(x0)
t

provided that the limit exists.

The (total) derivative f ′ and the directional derivative Dvf are connected by the following
relation

Dvf(x0) = f ′(x0)v

Definition 13 (Partial derivative). If D ⊂ Rn, and the function f : D → R is differentiable,
the partial derivative of f , at x0 ∈ D, is

∂f

∂xj
(x0) = lim

t→0

f(x0 + tej) − f(x0)
t

where ej is the j’th standard basis vector of Rn.
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Definition 14 (Gradient). If D ⊂ Rn, and the function f : D → R is differentiable, the
gradient of f is the column vector of its partial derivatives:

∇f(x0) =
[ ∂f

∂x1
(x0), ∂f

∂x2
(x0), . . . ,

∂f

∂xn
(x0)

]ᵀ
The directional derivative and gradient are connected by the following relation

Dvf(x0) = 〈∇f(x0), v〉

where 〈·, ·〉 is the familiar dot-product.

Now we have the tools to prove a powerful theorem of functions that are both convex and
differentiable.

Theorem 15 (Convexity of differentiable functions). Let f : X → R be a convex and differ-
entiable function. Then the following statements are equivalent:

i) f is convex
ii) ∀x, y ∈ X, f(y) ≥ f(x) + 〈∇f(x), y − x〉
iii) ∀x, y ∈ X, 〈∇f(x) − ∇f(y), x − y〉 ≥ 0

Proof. i) → ii) First note the following relations:

αx + (1 − α)y = y + α(x − y)
αf(x) + (1 − α)f(y) = f(y) + α(f(x) − f(y)

Since f is convex, we write the usual inequality using the relation above:

f(y + α(x − y)) ≤ f(y) + α(f(x) − f(y))

Now we write the inner product of the gradient of f , and the vector x − y, as

〈∇f(y), x − y〉 = lim
α→0

f(y + α(x − y)) − f(y)
α

Using the convexity inequality, we get

lim
α→0

f(y + α(x − y)) − f(y)
α

≤ lim
α→0

f(y) + α(f(x) − f(y)) − f(y)
α

= . . .

· · · = lim
α→0

α(f(x) − f(y))
α

= f(x) − f(y)

and so

〈∇f(y), x − y〉 ≤ f(x) − f(y)

Since this holds for all x, y ∈ X, we can swap the variables in the above inequality, which
finishes the proof.

ii) → iii) Since the relation holds for all x, y ∈ X, we can swap x and y to produce two
inequalities:

f(y) − f(x) ≥ 〈∇f(x), y − x〉
f(x) − f(y) ≥ 〈∇f(y), x − y〉
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Adding them gives

0 ≥ 〈∇f(x), y − x〉 + 〈∇f(y), x − y〉

We can extract −1 from the second slot in the inner product, and using the distributativity
in first slot property, we get

0 ≥ 〈∇f(x), y − x〉 − 〈∇f(y), y − x〉 = 〈∇f(x) − ∇f(y), y − x〉

If we further restrict our investigation to convex functions that are twice differentiable, we
get conditions on the Hessian of f . To prove these results however, we need some additional
machinery. First, the mean value theorem from single variable calculus.

Theorem 16 (Mean value theorem). If g : [a, b] → R is continuous on [a, b] and differentiable
on (a, b), then there exists a point c ∈ (a, b) so that

g′(c) = g(b) − g(a)
b − a

Since we restrict our focus to twice differentiable functions, we can be sure that the require-
ments in the theorem holds. However, the theorem concerns functions with a 1-dimensional
domain, and since we are working with functions that map subsets of Rn to R, the theorem
is not directly applicable.

Consider, as an example, a function f : R2 → R, such that the graph of f resembles some
paraboloid. Fig. 6 is an example of such a function.

Figure 6: Example of the mean value theorem.
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Pick two points x, y ∈ R2 and let x, y, f(x) define a plane that slices through the paraboloid.
Now if we let z = αx + (1 − α)y, for α ∈ (0, 1) we can picture the composition g(α) = f(z(α))
as depending on a single variable in the plane. By the mean value theorem, there exists a
point α∗, with z∗ = α∗x + (1 − α∗)y, such that

g′(α∗) = g(1) − g(0)
1 − 0 = f(y) − f(x)

The derivative g′(α∗) corresponds to the directional derivative of Dy−xf(z∗), or in terms
of the gradient:

〈∇f(z∗), y − x〉 = f(y) − f(x)

Therefore, generalizing to higher dimensions, if we have x, y ∈ X ⊂ Rn, and f : X → R is
differentiable, there exists a point z ∈ X such that

f(y) = f(x) + 〈f(z), y − x〉

Definition 17 (Hessian matrix). Let X ⊂ Rn, and f : X → R be a twice differentiable
function. The Hessian matrix of f is defined as the square matrix of second partial derivatives:

Hf =



∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
... . . . ...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n


Definition 18 (Positive semi-definite). A symmetric real matrix M ∈ L(Rn) is said to be
positive-semi definite (PSD) if xT Mx is non-negative for all vectors x ∈ Rn.

Important properties of M being PSD is that all eigenvalues of M are real, and

∀x ∈ Rn, 〈Mx, x〉 ≥ 0

which is also a necessary condition.

Now we can state and prove (in one direction) a theorem about twice differentiable convex
functions.

Theorem 19 (Convexity of twice-differentiable functions). Let X ⊂ Rn be a convex set, and
f : X → R a twice differentiable function. Then f is convex if and only if the Hessian of f ,
Hf , is a positive semi-definite matrix on X.

Proof. If f is a function on X, then the partial derivative ∂f
∂xj

is also a function on X, so
the mean value theorem holds just the same. Therefore, for all x, y ∈ X there exists a point
z = αx + (1 − α)y ∈ X, α ∈ (0, 1) such that

∂

∂xj
f(y) = ∂

∂xj
f(x) + 〈∇ ∂

∂xj
f(z), y − x〉

or equivalently, with the dot-product notation 〈a, b〉 = a · b = aᵀb

∂

∂xj
f(y) = ∂

∂xj
f(x) +

[
∇ ∂

∂xj
f(z)

]ᵀ
(y − x)

8



By writing the gradient as a column-vector of partial derivatives we get

∂

∂xj
f(y) = ∂

∂xj
f(x) +

[ ∂2

∂x1xj
f(z), ∂2

∂x2xj
f(z), . . .

]
(y − x)

By letting j = 1, 2 . . . n, we get a system of equations involving the Hessian matrix

∇f(y) = ∇f(x) + Hf (z)(y − x)

Moving ∇f(x) to the left hand side, and taking the inner product with respect to x − y
(on both sides) gives

〈Hf (z)(y − x), y − x〉 = 〈∇f(y) − ∇f(x), y − x〉 ≥ 0

where we used property iii) of Theorem 15 for the inequality.

If we restrict z to be in the interior of X, denoted by int(X), we can always find points
x, y ∈ X such that the above inequality holds. Therefore, Hf is PSD on int(X):

∀z ∈ int(X), x ∈ Rn, 〈Hf (z)x, x〉 ≥ 0

If z lies on the boundary of X, we can instead appeal to the continuity of Hf . Let zn be
a sequence of points in int(X) such that (zn) → z, where z lies on the boundary of X. It
follows that

∀x ∈ Rn, 〈Hf (zn)x, x〉 ≥ 0

The sequence defined by the left hand side is in R, so we can apply the order limit theorem
to get

∀x ∈ Rn, lim
n→∞

〈Hf (zn)x, x〉 ≥ 0

and finally, by continuity,

∀x ∈ Rn, 〈Hf (z)x, x〉 ≥ 0

which completes the proof.
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