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1 Gradient Descent
Let f : Rn → R. In this lecture an unconstrained problem

minimize
x∈Rn

f(x), (1)

is considered. The gradient descent (GD) method iteratively solves (1) by the following
recursion

x0 ∈ Rn,
xk+1 = xk − αk∇f(xk),

(2)

where x0 is the initial point, αk > 0 is the step size and ∇f(xk) is the gradient of f(x) at
x = xk. The focus of this lecture is on interpreting the GD method and analyze its convergence
properties.

2 Interpretation
In this section several interpretations of GD are provided.

2.1 Fixed Point Operator

Let T (x) : Rn → Rn be an operator. A fixed point x̄ of T (x) is given by the equation

T (x̄) = x̄.

Let T (x) , x−∇f(x), then critical points of f are found by solving for fixed points of T (x),
i.e.,

T (x̄) = x̄ =⇒ ∇f(x̄) = 0.

An attractive fixed point can be to computed iteratively by considering

xk+1 = T (xk), (3)

which, for αk = 1, is identical to (2) since

x0 ∈ Rn,
xk+1 = T (xk) = xk −∇f(xk).

(4)

2.2 Taylor Series Expansion

If f is a complicated function but still the objective is to solve (1) it is reasonable to approx-
imate f . A Taylor series expansion of f(x) around xk is given by

f(x) = f(xk) + 〈∇f(xk), x− xk〉+ 1
2〈∇

2f(xk)(x− xk), x− xk〉+O(‖xk‖3), (5)
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Figure 1: Approximating f(x) by a linear function f(xk) + 〈∇f(xk), x − xk〉. Since a linear
function is unbounded this approximation is not suitable as the next iterate xk+1 would tend
to −∞.

where O(‖xk‖3) collects higher-order terms. For a first-order Taylor approximation f(x) ≈
f(xk) + 〈∇f(xk), x− xk〉 the minimization problem in (1) reduces to

xk+1 = arg min
x

{f(xk) + 〈∇f(xk), x− xk〉} .

This approximation yields a function which is linear in x and since linear functions are un-
bounded this approximation is too rough, see Figure 1. Including the second-order term, see
Figure 2, 1

2〈∇
2f(xk)(x− xk), x− xk〉 yields

xk+1 = arg min
x

{
〈∇f(xk), x− xk〉+ 1

2〈∇
2f(xk)(x− xk), x− xk〉

}
,

where the constant term has been removed. If the Hessian ∇2f(xk) is positive semi-definite
this problem has a solution.

If ∇2f(xk) is unavailable but substituted with 1
αk
I, xk+1 is given by

xk+1 = arg min
x

{
〈∇f(xk), x− xk〉+ 1

2αk
‖x− xk‖2

}
.

Differentiating 〈∇f(xk), x− xk〉+ 1
2αk
‖x− xk‖2 w.r.t. x yields

∇f(xk) + 1
αk

(x− xk).

Equating to zero and denoting the solution by xk+1 yields

∇f(xk) + 1
αk

(xk+1 − xk) = 0 ⇐⇒ xk+1 = xk − αk∇f(xk), (6)

which is the GD method.

2.3 Steepest Descent

Consider the problem
arg max
‖d‖=1

lim
t→0

f(x+ td)− f(x)
t

= arg max
‖d‖=1

〈∇f(x), d〉.
(7)
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Figure 2: Approximating f(x) by a quadratic function function f(xk) + 〈∇f(xk), x − xk〉 +
1
2〈∇

2f(xk)(x − xk), x − xk〉. The next iterate xk+1 is found by minimizing the quadratic
approximation.

Maximizing the inner product 〈∇f(x), d〉 is accomplished by a vector parallel to ∇f(x), i.e.,

d? = ∇f(x)
‖∇f(x)‖ , (8)

where normalization is included for d? to satisfy ‖d?‖ = 1. This means that moving in the
gradient direction d? is equal to moving in the direction of steepest ascent locally at x. If
instead −d? is considered the direction of steepest descent is retrieved. By continuously
pointing in the local value of d? = d?(x), (non-strictly) smaller and smaller values of f are
traversed. With a properly chosen step size, a local minimum will eventually be found, given
that such exist.

3 Convergence
In this section convergence of the GD is analyzed, but first a couple of useful concepts are
introduced.

3.1 L-Smooth Functions and the Descent Lemma

Definition 1 (L-smooth function). The function f : Rn → R is L-smooth if and only if

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖, ∀x, y ∈ Rn, (9)

where L ≥ 0 is the Lipschitz constant.
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Example: L-Smooth Function

Let f(x) = x2. The gradient is ∇f(x) = 2x. Since

‖∇f(y)−∇f(x)‖ = |2y − 2x| ≤ L|y − x| = L‖y − x‖, ∀x, y ∈ R,

is satisfied for L = 2, f(x) is L-smooth.

Example: Non-L-Smooth Function

Let f(x) = x3. The gradient is ∇f(x) = 3x2. With x = 0, the l.h.s. of

|3y2| ≤ L|y|,

will grow faster than the r.h.s. and hence |∇f(y) −∇f(x)| cannot be bounded by L|y − x|,
∀x, y ∈ R.

Proposition 2 (L-smoothness of twice-differentiable functions). If f is twice-differentiable,
then the condition in (9) is equivalent to

λmax
(
∇2f(x)

)
≤ L, ∀x, (10)

where λmax
(
∇2f(x)

)
is the maximum eigenvalue of the Hessian ∇2f(x) of f .

Proof. The mean-value theorem is given in the notes of Lecture 2. It states that for any
x, y ∈ Rn there exists a z ∈ Rn in between x and y such that

∇f(y) = ∇f(x) +∇2f(z)(y − x).

Using y = x+ td, where d ∈ Rn and t ≥ 0 is a scalar, (9) can be written as

‖∇2f(z)td‖ ≤ L‖td‖
⇐⇒ ‖∇2f(z)d‖ ≤ L‖d‖.

Let t→ 0, by continuity x = y = z and hence

‖∇2f(x)d‖ ≤ L‖d‖. (11)

Now, since the maximum eigenvalue λmax(A) of a matrix A is given by

maximize
‖u‖6=0

‖Au‖
‖u‖

,

and since (11) holds for all d and in particular for d associated with λmax, we have that

λmax
(
∇2f(x)

)
≤ L.

Lemma 3 (Descent lemma). If f : Rn → R is L-smooth with Lipschitz constant L, then

f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L

2 ‖y − x‖
2. (12)
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Proof. Let z = x+ t(y − x) where t ∈ [0, 1]. By the fundamental theorem of calculus

f(y)− f(x) =
∫ 1

0

d

dt
f(z)dt =

∫ 1

0
〈∇f(z), y − x〉dt, (13)

where in the second equality the chain rule
d

dt
f(z(t)) =

〈
∇f, d

dt
z(t)

〉
,

was used. Subtracting 〈∇f(x), y − x〉 from both sides of (13) yields

f(y)− f(x)− 〈∇f(x), y − x〉 =
∫ 1

0
〈∇f(z)−∇f(x), y − x〉dt. (14)

By taking the absolute value of the r.h.s. and using the Cauchy-Schwarz inequality, which
states that

|〈x, y〉| ≤ ‖x‖‖y‖,
we arrive at

f(y)− f(x)− 〈∇f(x), y − x〉 ≤
∣∣∣∣∫ 1

0
〈∇f(z)−∇f(x), y − x〉dt

∣∣∣∣
≤
∫ 1

0
|〈∇f(z)−∇f(x), y − x〉| dt

≤
∫ 1

0
‖∇f(z)−∇f(x)‖‖y − x‖dt. (15)

By assumption f is L-smooth, hence

‖∇f(z)−∇f(x)‖ ≤ L‖z − x‖ = L‖t(y − x)‖ = Lt‖y − x‖.

Plugging this expression into (15) finally gives us

f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L‖y − x‖2
∫ 1

0
t dt = L

2 ‖y − x‖
2.

3.2 Convergence Analysis

Assumption 4 (Convergence of the gradient descent method). The following assumptions
are made for the convergence analysis of the GD method:

1. f(x) : Rn → R is L-smooth.

2. f(x) is bounded from below, i.e., f(x) ≥ flow,∀x.

3. The Lipschitz constant L is known.

Since f is L-smooth we can use Lemma 3 with y, x replaced by xk+1, xk to get

f(xk+1)− f(xk)− 〈∇f(xk), xk+1 − xk〉 ≤
L

2 ‖xk+1 − xk‖2.

Using the GD recursion xk+1 = xk − αk∇f(xk) this can be written as

f(xk+1)− f(xk)− αk‖∇f(xk)‖2 ≤
L

2 α
2
k‖∇f(xk)‖2

⇐⇒ f(xk+1)− f(xk) ≤ −αk
(

1− αkL

2

)
‖∇f(xk)‖2.
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What we want is
−αk

(
1− αkL

2

)
< 0,

while its absolute value is as large as possible, since in this case f(xk+1)− f(xk) becomes as
small as possible which is desirable w.r.t. convergence. The optimal value for the step size is
αk = 1

L which gives

f(xk+1)− f(xk) ≤ −
1

2L‖∇f(xk)‖2,

where availability of L is guaranteed by the third assumption. Now we want to make ‖∇f(xk)‖
as small as possible since a local minimum is characterized by ∇f(x) = 0. To get rid of x we
first use

‖∇f(xk)‖2 ≤ 2L (f(xk)− f(xk+1)) ,

and then construct the sum
K∑
i=0
‖∇f(xi)‖2 ≤ 2L (f(x0)− f(xK+1)) ≤ 2L (f(x0)− flow) , (16)

where the second assumption was used together with the fact that

‖∇f(xk−1)‖2 + ‖∇f(xk)‖2 ≤ 2L (f(xk−1)− f(xk)) + 2L (f(xk)− f(xk+1))
= 2L (f(xk−1)− f(xk+1)) .

Since (16) holds we have that

min
i
‖∇f(xi)‖2 ≤

2L (f(x0)− flow)
K

,

i.e., the smallest value of a sequence cannot be larger than the mean of the same sequence.
If a tolerance of ‖∇f(xk)‖ ≤ ε is required, then

2L (f(x0)− flow)
K

≤ ε2,

and hence
K = 2L (f(x0)− flow)

ε2 , (17)

iterations are required to guarantee that ‖∇f(xk)‖ ≤ ε is reached. In other words the com-
plexity is 1

ε2 . The main drawback is the restriction imposed by the third assumption, i.e., the
Lipschitz constant L must be available. If L is unavailable, then these convergence results do
not hold.
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