6FMAI19 Nonlinear Optimization Spring, 2022

Lecture #3 — 2/2, 2022
Lecturer: Yura Malitsky Scribe: Robin Forsling

1 Gradient Descent

Let f: R™ — R. In this lecture an unconstrained problem

minimize f(z), (1)

is considered. The gradient descent (GD) method iteratively solves (1) by the following

recursion
x9 € R” ,

Tpy1 = T — oV f(xg),

(2)

where zg is the initial point, aj > 0 is the step size and V f(xy) is the gradient of f(z) at
x = xg. The focus of this lecture is on interpreting the GD method and analyze its convergence
properties.

2 Interpretation

In this section several interpretations of GD are provided.

2.1 Fixed Point Operator
Let T'(x): R™ — R™ be an operator. A fized point T of T'(x) is given by the equation
T(z) = .

Let T(z) £ x — V f(z), then critical points of f are found by solving for fixed points of T'(z),
i.e.,

T(z)=x2 = Vf(z)=0.
An attractive fixed point can be to computed iteratively by considering
i1 = T'(zk), (3)
which, for o, = 1, is identical to (2) since
xg € R,

g1 = T(xg) = 2x — V (k).

2.2 Taylor Series Expansion

If f is a complicated function but still the objective is to solve (1) it is reasonable to approx-
imate f. A Taylor series expansion of f(x) around xj, is given by

f(x) = fop) +(Vf(en), x — ) + %<V2f(ﬂfk)($ —ap),x = ag) + O([lar*), ()



fzr) +(Vf(zg), v — x)

Figure 1: Approximating f(z) by a linear function f(xy) + (Vf(zx),x — ). Since a linear
function is unbounded this approximation is not suitable as the next iterate zy41 would tend
to —oo.

where O(||x4||?) collects higher-order terms. For a first-order Taylor approximation f(x) ~
f(zx) + (Vf(zk),r — x) the minimization problem in (1) reduces to
T = argmin {f(zx) + (Vf(zp), 2 — zp)} -
€T

This approximation yields a function which is linear in x and since linear functions are un-
bounded this approximation is too rough, see Figure 1. Including the second-order term, see
Figure 2, 1(V?f(zy)(z — z), x — z) yields

Tyl = argmmin {(Vf(xk)a T —xp) + %<V2f(xk)($ —Tk), T — xk)} :

where the constant term has been removed. If the Hessian V?f(x},) is positive semi-definite
this problem has a solution.
If V2 f(x,) is unavailable but substituted with a—lkl , Tkt is given by

. 1
Tyl = argmin {(Vf(a:k),:c—a:k>+ o ||x—xk|]2}
T o

Differentiating (V f(zy),z — ) + i”x — z¢||? wor.t. z yields

1

Vf(zk) + —(z — xp).
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Equating to zero and denoting the solution by xx,1 yields
1
Vf(l'k) + OTk(karl — :Ck) =0 < Tetl1 = T — aka(xk), (6)

which is the GD method.

2.3 Steepest Descent

Consider the problem
f(z+td) — f(z)

argmax lim

=1 =0 t (7)
=argmax (Vf(z),d).
lldll=1



flae) + (Vf (@), z — ap) + 5(V2f(2) (@ — 1), 2 — 23

Figure 2: Approximating f(z) by a quadratic function function f(x) + (Vf(xk),z — zk) +
$(V2f(2k) (@ — z),x — z). The next iterate zj,; is found by minimizing the quadratic
approximation.

Maximizing the inner product (V f(z),d) is accomplished by a vector parallel to V f(z), i.e.,

Vf(x)
df = —————, (8)
IVF ()|
where normalization is included for d* to satisfy ||d*|| = 1. This means that moving in the

gradient direction d* is equal to moving in the direction of steepest ascent locally at x. If
instead —d* is considered the direction of steepest descent is retrieved. By continuously
pointing in the local value of d* = d*(x), (non-strictly) smaller and smaller values of f are
traversed. With a properly chosen step size, a local minimum will eventually be found, given
that such exist.

3 Convergence

In this section convergence of the GD is analyzed, but first a couple of useful concepts are
introduced.

3.1 L-Smooth Functions and the Descent Lemma
Definition 1 (L-smooth function). The function f: R™ — R is L-smooth if and only if
IVf(y) = Vi@l <Llly—=|, Vz,yeR", (9)

where L > 0 is the Lipschitz constant.



Example: L-Smooth Function
Let f(z) = 2%, The gradient is V f(x) = 2. Since

IVi(y) = V@)l =2y = 22| < Lly — =] = L|ly — =[|, Va,y €R,
is satisfied for L = 2, f(x) is L-smooth.
Example: Non-L-Smooth Function
Let f(z) = z3. The gradient is V f(x) = 322. With z = 0, the Lh.s. of
[35%| < Llyl,

will grow faster than the r.h.s. and hence |V f(y) — V f(z)| cannot be bounded by L|y — z|,
Vr,y € R.

Proposition 2 (L-smoothness of twice-differentiable functions). If f is twice-differentiable,
then the condition in (9) is equivalent to

Ao (v2 f(:z)) <L, Va, (10)

where Amax (V2f(2)) is the mazimum eigenvalue of the Hessian V2 f(z) of f.

Proof. The mean-value theorem is given in the notes of Lecture 2. It states that for any
x,y € R™ there exists a z € R" in between z and y such that

Vi) = Vi) + V() (y ).
Using y = x + td, where d € R"™ and ¢ > 0 is a scalar, (9) can be written as

IV2f(2)td]| < Litd|
= [IV2f(2)d| < Ld]|.

Let t — 0, by continuity = y = z and hence
IV2 f(z)d|| < L. (11)

Now, since the maximum eigenvalue A\pax(A) of a matrix A is given by

maximize
Juuf| 0 [[u

and since (11) holds for all d and in particular for d associated with Apax, we have that

Amax (VQf(ac)) < L.

Lemma 3 (Descent lemma). If f: R — R is L-smooth with Lipschitz constant L, then

Fl) ~ F() ~ (VF@)y —2) < 2y — (12)



Proof. Let z = x + t(y — x) where ¢ € [0,1]. By the fundamental theorem of calculus

1

1
1)~ @) = [ ZrEd = [5Gy - ad (13)

0

where in the second equality the chain rule
d d
G0 = (V5. 520)

was used. Subtracting (Vf(z),y — ) from both sides of (13) yields

fy) = f(2) = (Vf(x),y —x) = /01<Vf(2) = Vf(x),y — z)dt. (14)

By taking the absolute value of the r.h.s. and using the Cauchy-Schwarz inequality, which
states that

(=, y)| < lllllyll;

we arrive at
F) = £@) = (V@y =) < | [ (V5(:) = VS, =
1
< /0 (Vf(2) = VF(x),y — )| dt
< [ 1956~ Vi@ )lly — ol (15)

By assumption f is L-smooth, hence
IVF(z) = V@)l < Ll|z = =[] = Ll[t(y — @) = Lt[ly — 2|

Plugging this expression into (15) finally gives us

F) = F@) ~ (V7@ —a) < Dy — ol [ tde = Sl - =

3.2 Convergence Analysis

Assumption 4 (Convergence of the gradient descent method). The following assumptions
are made for the convergence analysis of the GD method:

1. f(z): R™ — R is L-smooth.
2. f(x) is bounded from below, i.e., f(x) > fiow, V.
3. The Lipschitz constant L is known.

Since f is L-smooth we can use Lemma 3 with y, x replaced by zpy1,xx to get

L
< =

f(@pr1) = fzr) — (Vf(zp), Tpr1 — op) < 5 | Tkt1 — 2k

Using the GD recursion xy41 = xp — oV f(x) this can be written as

Flarer) = flaw) — arl VF(zp)l* < gaillvf(mk)IF

OékL

= fan) = fo) < —an (1= 25 ) 97 @)



What we want is

while its absolute value is as large as possible, since in this case f(xg+1) — f(zr) becomes as
small as possible which is desirable w.r.t. convergence. The optimal value for the step size is
Qg = % which gives

Fla) = fla) < 5 195 @0,

where availability of L is guaranteed by the third assumption. Now we want to make ||V f(x)||
as small as possible since a local minimum is characterized by V f(z) = 0. To get rid of = we
first use

IV (@)ll* < 2L (f(zx) = flzrr1)

and then construct the sum
K
DIV F()ll® < 2L (f(x0) — flzrs1)) < 2L (f(20) = fiow) (16)
i=0

where the second assumption was used together with the fact that

IV £ @r-0)I? + IV F@)l* < 2L (f (k1) = f(2x)) + 2L (f(2x) = f(@r41))
= 2L (f(zr1) = f(@141)) -

Since (16) holds we have that

L (f(0) — fiow)
e 7

. 2
min V() <

i.e., the smallest value of a sequence cannot be larger than the mean of the same sequence.
If a tolerance of ||V f(z)| < € is required, then

2L (f(-TO) - flow) < 62
K >~¢&,

and hence
2L (f(x0) — fiow)

g2

K = , (17)

iterations are required to guarantee that |V f(xy)|| < € is reached. In other words the com-
plexity is 5% The main drawback is the restriction imposed by the third assumption, i.e., the
Lipschitz constant L must be available. If L is unavailable, then these convergence results do
not hold.



	Gradient Descent
	Interpretation
	Fixed Point Operator
	Taylor Series Expansion
	Steepest Descent

	Convergence
	L-Smooth Functions and the Descent Lemma
	Convergence Analysis


