Lecture \#3-2/2, 2022
Lecturer: Yura Malitsky
Scribe: Robin Forsling

1 Gradient Descent

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. In this lecture an unconstrained problem

$$
\begin{equation*}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x), \tag{1}
\end{equation*}
$$

is considered. The gradient descent (GD) method iteratively solves (1) by the following recursion

$$
\begin{align*}
x_{0} & \in \mathbb{R}^{n}, \\
x_{k+1} & =x_{k}-\alpha_{k} \nabla f\left(x_{k}\right), \tag{2}
\end{align*}
$$

where x_{0} is the initial point, $\alpha_{k}>0$ is the step size and $\nabla f\left(x_{k}\right)$ is the gradient of $f(x)$ at $x=x_{k}$. The focus of this lecture is on interpreting the GD method and analyze its convergence properties.

2 Interpretation

In this section several interpretations of GD are provided.

2.1 Fixed Point Operator

Let $T(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an operator. A fixed point \bar{x} of $T(x)$ is given by the equation

$$
T(\bar{x})=\bar{x} .
$$

Let $T(x) \triangleq x-\nabla f(x)$, then critical points of f are found by solving for fixed points of $T(x)$, i.e.,

$$
T(\bar{x})=\bar{x} \Longrightarrow \nabla f(\bar{x})=0 .
$$

An attractive fixed point can be to computed iteratively by considering

$$
\begin{equation*}
x_{k+1}=T\left(x_{k}\right), \tag{3}
\end{equation*}
$$

which, for $\alpha_{k}=1$, is identical to (2) since

$$
\begin{align*}
x_{0} & \in \mathbb{R}^{n}, \\
x_{k+1} & =T\left(x_{k}\right)=x_{k}-\nabla f\left(x_{k}\right) . \tag{4}
\end{align*}
$$

2.2 Taylor Series Expansion

If f is a complicated function but still the objective is to solve (1) it is reasonable to approximate f. A Taylor series expansion of $f(x)$ around x_{k} is given by

$$
\begin{equation*}
f(x)=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2}\left\langle\nabla^{2} f\left(x_{k}\right)\left(x-x_{k}\right), x-x_{k}\right\rangle+\mathcal{O}\left(\left\|x_{k}\right\|^{3}\right), \tag{5}
\end{equation*}
$$

Figure 1: Approximating $f(x)$ by a linear function $f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle$. Since a linear function is unbounded this approximation is not suitable as the next iterate x_{k+1} would tend to $-\infty$.
where $\mathcal{O}\left(\left\|x_{k}\right\|^{3}\right)$ collects higher-order terms. For a first-order Taylor approximation $f(x) \approx$ $f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle$ the minimization problem in (1) reduces to

$$
x_{k+1}=\underset{x}{\arg \min } \quad\left\{f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle\right\} .
$$

This approximation yields a function which is linear in x and since linear functions are unbounded this approximation is too rough, see Figure 1. Including the second-order term, see Figure 2, $\frac{1}{2}\left\langle\nabla^{2} f\left(x_{k}\right)\left(x-x_{k}\right), x-x_{k}\right\rangle$ yields

$$
x_{k+1}=\underset{x}{\arg \min } \quad\left\{\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2}\left\langle\nabla^{2} f\left(x_{k}\right)\left(x-x_{k}\right), x-x_{k}\right\rangle\right\},
$$

where the constant term has been removed. If the Hessian $\nabla^{2} f\left(x_{k}\right)$ is positive semi-definite this problem has a solution.

If $\nabla^{2} f\left(x_{k}\right)$ is unavailable but substituted with $\frac{1}{\alpha_{k}} I, x_{k+1}$ is given by

$$
x_{k+1}=\underset{x}{\arg \min }\left\{\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2 \alpha_{k}}\left\|x-x_{k}\right\|^{2}\right\} .
$$

Differentiating $\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2 \alpha_{k}}\left\|x-x_{k}\right\|^{2}$ w.r.t. x yields

$$
\nabla f\left(x_{k}\right)+\frac{1}{\alpha_{k}}\left(x-x_{k}\right) .
$$

Equating to zero and denoting the solution by x_{k+1} yields

$$
\begin{equation*}
\nabla f\left(x_{k}\right)+\frac{1}{\alpha_{k}}\left(x_{k+1}-x_{k}\right)=0 \Longleftrightarrow x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right), \tag{6}
\end{equation*}
$$

which is the GD method.

2.3 Steepest Descent

Consider the problem

$$
\begin{align*}
& \underset{\|d\|=1}{\arg \max } \tag{7}\\
=\underset{t \rightarrow 0}{\log \max } & \langle\nabla f(x), d\rangle .
\end{align*}
$$

Figure 2: Approximating $f(x)$ by a quadratic function function $f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+$ $\frac{1}{2}\left\langle\nabla^{2} f\left(x_{k}\right)\left(x-x_{k}\right), x-x_{k}\right\rangle$. The next iterate x_{k+1} is found by minimizing the quadratic approximation.

Maximizing the inner product $\langle\nabla f(x), d\rangle$ is accomplished by a vector parallel to $\nabla f(x)$, i.e.,

$$
\begin{equation*}
d^{\star}=\frac{\nabla f(x)}{\|\nabla f(x)\|}, \tag{8}
\end{equation*}
$$

where normalization is included for d^{\star} to satisfy $\left\|d^{\star}\right\|=1$. This means that moving in the gradient direction d^{\star} is equal to moving in the direction of steepest ascent locally at x. If instead $-d^{\star}$ is considered the direction of steepest descent is retrieved. By continuously pointing in the local value of $d^{\star}=d^{\star}(x)$, (non-strictly) smaller and smaller values of f are traversed. With a properly chosen step size, a local minimum will eventually be found, given that such exist.

3 Convergence

In this section convergence of the GD is analyzed, but first a couple of useful concepts are introduced.

3.1 L-Smooth Functions and the Descent Lemma

Definition 1 (L-smooth function). The function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is L-smooth if and only if

$$
\begin{equation*}
\|\nabla f(y)-\nabla f(x)\| \leq L\|y-x\|, \quad \forall x, y \in \mathbb{R}^{n} \tag{9}
\end{equation*}
$$

where $L \geq 0$ is the Lipschitz constant.

Example: L-Smooth Function

Let $f(x)=x^{2}$. The gradient is $\nabla f(x)=2 x$. Since

$$
\|\nabla f(y)-\nabla f(x)\|=|2 y-2 x| \leq L|y-x|=L\|y-x\|, \quad \forall x, y \in \mathbb{R}
$$

is satisfied for $L=2, f(x)$ is L-smooth.

Example: Non- L-Smooth Function

Let $f(x)=x^{3}$. The gradient is $\nabla f(x)=3 x^{2}$. With $x=0$, the l.h.s. of

$$
\left|3 y^{2}\right| \leq L|y|,
$$

will grow faster than the r.h.s. and hence $|\nabla f(y)-\nabla f(x)|$ cannot be bounded by $L|y-x|$, $\forall x, y \in \mathbb{R}$.

Proposition 2 (L-smoothness of twice-differentiable functions). If f is twice-differentiable, then the condition in (9) is equivalent to

$$
\begin{equation*}
\lambda_{\max }\left(\nabla^{2} f(x)\right) \leq L, \quad \forall x, \tag{10}
\end{equation*}
$$

where $\lambda_{\max }\left(\nabla^{2} f(x)\right)$ is the maximum eigenvalue of the Hessian $\nabla^{2} f(x)$ of f.
Proof. The mean-value theorem is given in the notes of Lecture 2. It states that for any $x, y \in \mathbb{R}^{n}$ there exists a $z \in \mathbb{R}^{n}$ in between x and y such that

$$
\nabla f(y)=\nabla f(x)+\nabla^{2} f(z)(y-x)
$$

Using $y=x+t d$, where $d \in \mathbb{R}^{n}$ and $t \geq 0$ is a scalar, (9) can be written as

$$
\begin{aligned}
& \left\|\nabla^{2} f(z) t d\right\| \leq L\|t d\| \\
\Longleftrightarrow & \left\|\nabla^{2} f(z) d\right\| \leq L\|d\| .
\end{aligned}
$$

Let $t \rightarrow 0$, by continuity $x=y=z$ and hence

$$
\begin{equation*}
\left\|\nabla^{2} f(x) d\right\| \leq L\|d\| . \tag{11}
\end{equation*}
$$

Now, since the maximum eigenvalue $\lambda_{\max }(A)$ of a matrix A is given by

$$
\underset{\|u\| \neq 0}{\operatorname{maximize}} \frac{\|A u\|}{\|u\|},
$$

and since (11) holds for all d and in particular for d associated with $\lambda_{\text {max }}$, we have that

$$
\lambda_{\max }\left(\nabla^{2} f(x)\right) \leq L
$$

Lemma 3 (Descent lemma). If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is L-smooth with Lipschitz constant L, then

$$
\begin{equation*}
f(y)-f(x)-\langle\nabla f(x), y-x\rangle \leq \frac{L}{2}\|y-x\|^{2} . \tag{12}
\end{equation*}
$$

Proof. Let $z=x+t(y-x)$ where $t \in[0,1]$. By the fundamental theorem of calculus

$$
\begin{equation*}
f(y)-f(x)=\int_{0}^{1} \frac{d}{d t} f(z) d t=\int_{0}^{1}\langle\nabla f(z), y-x\rangle d t \tag{13}
\end{equation*}
$$

where in the second equality the chain rule

$$
\frac{d}{d t} f(z(t))=\left\langle\nabla f, \frac{d}{d t} z(t)\right\rangle,
$$

was used. Subtracting $\langle\nabla f(x), y-x\rangle$ from both sides of (13) yields

$$
\begin{equation*}
f(y)-f(x)-\langle\nabla f(x), y-x\rangle=\int_{0}^{1}\langle\nabla f(z)-\nabla f(x), y-x\rangle d t . \tag{14}
\end{equation*}
$$

By taking the absolute value of the r.h.s. and using the Cauchy-Schwarz inequality, which states that

$$
|\langle x, y\rangle| \leq\|x\|\|y\|,
$$

we arrive at

$$
\begin{align*}
f(y)-f(x)-\langle\nabla f(x), y-x\rangle & \leq\left|\int_{0}^{1}\langle\nabla f(z)-\nabla f(x), y-x\rangle d t\right| \\
& \leq \int_{0}^{1}|\langle\nabla f(z)-\nabla f(x), y-x\rangle| d t \\
& \leq \int_{0}^{1}\|\nabla f(z)-\nabla f(x)\|\|y-x\| d t \tag{15}
\end{align*}
$$

By assumption f is L-smooth, hence

$$
\|\nabla f(z)-\nabla f(x)\| \leq L\|z-x\|=L\|t(y-x)\|=L t\|y-x\|
$$

Plugging this expression into (15) finally gives us

$$
f(y)-f(x)-\langle\nabla f(x), y-x\rangle \leq L\|y-x\|^{2} \int_{0}^{1} t d t=\frac{L}{2}\|y-x\|^{2} .
$$

3.2 Convergence Analysis

Assumption 4 (Convergence of the gradient descent method). The following assumptions are made for the convergence analysis of the GD method:

1. $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is L-smooth.
2. $f(x)$ is bounded from below, i.e., $f(x) \geq f_{\text {low }}, \forall x$.
3. The Lipschitz constant L is known.

Since f is L-smooth we can use Lemma 3 with y, x replaced by x_{k+1}, x_{k} to get

$$
f\left(x_{k+1}\right)-f\left(x_{k}\right)-\left\langle\nabla f\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle \leq \frac{L}{2}\left\|x_{k+1}-x_{k}\right\|^{2} .
$$

Using the GD recursion $x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)$ this can be written as

$$
\begin{aligned}
& f\left(x_{k+1}\right)-f\left(x_{k}\right)-\alpha_{k}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leq \frac{L}{2} \alpha_{k}^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \\
\Longleftrightarrow & f\left(x_{k+1}\right)-f\left(x_{k}\right) \leq-\alpha_{k}\left(1-\frac{\alpha_{k} L}{2}\right)\left\|\nabla f\left(x_{k}\right)\right\|^{2} .
\end{aligned}
$$

What we want is

$$
-\alpha_{k}\left(1-\frac{\alpha_{k} L}{2}\right)<0,
$$

while its absolute value is as large as possible, since in this case $f\left(x_{k+1}\right)-f\left(x_{k}\right)$ becomes as small as possible which is desirable w.r.t. convergence. The optimal value for the step size is $\alpha_{k}=\frac{1}{L}$ which gives

$$
f\left(x_{k+1}\right)-f\left(x_{k}\right) \leq-\frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)\right\|^{2}
$$

where availability of L is guaranteed by the third assumption. Now we want to make $\left\|\nabla f\left(x_{k}\right)\right\|$ as small as possible since a local minimum is characterized by $\nabla f(x)=0$. To get rid of x we first use

$$
\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leq 2 L\left(f\left(x_{k}\right)-f\left(x_{k+1}\right)\right),
$$

and then construct the sum

$$
\begin{equation*}
\sum_{i=0}^{K}\left\|\nabla f\left(x_{i}\right)\right\|^{2} \leq 2 L\left(f\left(x_{0}\right)-f\left(x_{K+1}\right)\right) \leq 2 L\left(f\left(x_{0}\right)-f_{\text {low }}\right) \tag{16}
\end{equation*}
$$

where the second assumption was used together with the fact that

$$
\begin{aligned}
\left\|\nabla f\left(x_{k-1}\right)\right\|^{2}+\left\|\nabla f\left(x_{k}\right)\right\|^{2} & \leq 2 L\left(f\left(x_{k-1}\right)-f\left(x_{k}\right)\right)+2 L\left(f\left(x_{k}\right)-f\left(x_{k+1}\right)\right) \\
& =2 L\left(f\left(x_{k-1}\right)-f\left(x_{k+1}\right)\right) .
\end{aligned}
$$

Since (16) holds we have that

$$
\min _{i}\left\|\nabla f\left(x_{i}\right)\right\|^{2} \leq \frac{2 L\left(f\left(x_{0}\right)-f_{\text {low }}\right)}{K}
$$

i.e., the smallest value of a sequence cannot be larger than the mean of the same sequence. If a tolerance of $\left\|\nabla f\left(x_{k}\right)\right\| \leq \varepsilon$ is required, then

$$
\frac{2 L\left(f\left(x_{0}\right)-f_{\text {low }}\right)}{K} \leq \varepsilon^{2},
$$

and hence

$$
\begin{equation*}
K=\frac{2 L\left(f\left(x_{0}\right)-f_{\text {low }}\right)}{\varepsilon^{2}}, \tag{17}
\end{equation*}
$$

iterations are required to guarantee that $\left\|\nabla f\left(x_{k}\right)\right\| \leq \varepsilon$ is reached. In other words the complexity is $\frac{1}{\varepsilon^{2}}$. The main drawback is the restriction imposed by the third assumption, i.e., the Lipschitz constant L must be available. If L is unavailable, then these convergence results do not hold.

