Lecture \#4 - Feb. 9th, 2022
Lecturer: Yura Malitsky

1 Gradient Descent with Convex Objective Function

During last lecture, we introduced the gradient descent algorithm

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k} \nabla f\left(\mathbf{x}_{k}\right), \quad \text { for } k=0,1, \cdots, K-1, \tag{1}
\end{equation*}
$$

and analyzed the convergence with fixed step size when the objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is L-smooth and bounded below by f^{*}. Now, we provide the convergence analysis of gradient descend when the $f(\cdot)$ is also convex.

1.1 Convergence Analysis

Assumption 1. (L-Smoothness) The objective function is differentiable and L-smooth, such that $\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\| \leq L\|\mathbf{x}-\mathbf{y}\|$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.

Assumption 2. (Convexity) The objective function is convex, such that $\theta f(\mathbf{x})+(1-\theta) f(\mathbf{y}) \geq$ $f(\theta \mathbf{x}+(1-\theta) \mathbf{y})$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $\theta \in[0,1]$.

Theorem 3. Under Assumptions 1 and 2, the gradient descent algorithm, with fixed step size $\alpha_{k}=\alpha \in(0,1 / L]$, gives

$$
\begin{equation*}
f\left(\mathbf{x}_{K}\right)-f\left(\mathbf{x}^{*}\right) \leq \frac{\left\|\mathbf{x}_{0}-\mathbf{x}^{*}\right\|^{2}}{2 \alpha K}, \tag{2}
\end{equation*}
$$

where \mathbf{x}^{*} is the optimal solution, i.e., $\mathbf{x}^{*}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\arg \min } f(\mathbf{x})$.
Proof. First consider

$$
\begin{align*}
\left\|\mathbf{x}_{k+1}-\mathbf{x}^{*}\right\|^{2} & =\left\|\mathbf{x}_{k}-\alpha \nabla f\left(\mathbf{x}_{k}\right)-\mathbf{x}^{*}\right\|^{2} \\
& =\left\|\mathbf{x}_{k}-\mathbf{x}^{*}\right\|^{2}-2 \alpha\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}_{k}-\mathbf{x}^{*}\right\rangle+\alpha^{2}\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2} . \tag{3}
\end{align*}
$$

Using the first-order condition of convex functions, we have

$$
\begin{equation*}
\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}_{k}-\mathbf{x}^{*}\right\rangle \geq f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}^{*}\right) . \tag{4}
\end{equation*}
$$

Meanwhile, by utilizing L-smoothness

$$
\begin{align*}
f\left(\mathbf{x}_{k+1}\right) & \leq f\left(\mathbf{x}_{k}\right)+\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}_{k+1}-\mathbf{x}_{k}\right\rangle+\frac{L}{2}\left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|^{2} \\
& =f\left(\mathbf{x}_{k}\right)-\alpha\left(1-\frac{L \alpha}{2}\right)\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2} \tag{5}\\
& \stackrel{(a)}{\leq} f\left(\mathbf{x}_{k}\right)-\frac{\alpha}{2}\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2},
\end{align*}
$$

where (a) follows by the condition $\alpha \in(0,1 / L]$. The above equation can be rearranged as

$$
\begin{equation*}
\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2} \leq-\frac{2}{\alpha}\left(f\left(\mathbf{x}_{k+1}\right)-f\left(\mathbf{x}_{k}\right)\right) . \tag{6}
\end{equation*}
$$

Substitute (4) and (6) into (3), we obtain

$$
\begin{align*}
\left\|\mathbf{x}_{k+1}-\mathbf{x}^{*}\right\|^{2} & \leq\left\|\mathbf{x}_{k}-\mathbf{x}^{*}\right\|^{2}-2 \alpha\left(f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}^{*}\right)\right)-2 \alpha\left(f\left(\mathbf{x}_{k+1}\right)-f\left(\mathbf{x}_{k}\right)\right) \tag{7}\\
& =\left\|\mathbf{x}_{k}-\mathbf{x}^{*}\right\|^{2}-2 \alpha\left(f\left(\mathbf{x}_{k+1}\right)-f\left(\mathbf{x}^{*}\right)\right)
\end{align*}
$$

Since (7) holds for all $k=0,1, \cdots, K-1$, we can sum the LHS and RHS over k, i.e.,

$$
\begin{equation*}
\sum_{k=0}^{K-1}\left\|\mathbf{x}_{k+1}-\mathbf{x}^{*}\right\|^{2} \leq \sum_{k=0}^{K-1}\left\|\mathbf{x}_{k}-\mathbf{x}^{*}\right\|^{2}-2 \alpha \sum_{k=0}^{K-1}\left(f\left(\mathbf{x}_{k+1}\right)-f\left(\mathbf{x}^{*}\right)\right) \tag{8}
\end{equation*}
$$

which can be rearranged as

$$
\begin{align*}
2 \alpha \sum_{k=0}^{K-1}\left(f\left(\mathbf{x}_{k+1}\right)-f\left(\mathbf{x}^{*}\right)\right) & \leq\left\|\mathbf{x}_{0}-\mathbf{x}^{*}\right\|^{2}-\left\|\mathbf{x}_{K}-\mathbf{x}^{*}\right\|^{2} \tag{9}\\
& \leq\left\|\mathbf{x}_{0}-\mathbf{x}^{*}\right\|^{2}
\end{align*}
$$

Notice that, as indicated by (5), $\left\{f\left(\mathbf{x}_{k}\right)\right\}$ is non-increasing sequence. Therefore, the LHS of (9) can be lower bounded by

$$
\begin{equation*}
2 \alpha \sum_{k=0}^{K-1}\left(f\left(\mathbf{x}_{k+1}\right)-f\left(\mathbf{x}^{*}\right)\right) \geq 2 \alpha K\left(f\left(\mathbf{x}_{k+1}\right)-f\left(\mathbf{x}^{*}\right)\right) \tag{10}
\end{equation*}
$$

After substituting the above inequality into (9), we obtain

$$
\begin{equation*}
f\left(\mathbf{x}_{K}\right)-f\left(\mathbf{x}^{*}\right) \leq \frac{\left\|\mathbf{x}_{0}-\mathbf{x}^{*}\right\|^{2}}{2 \alpha K} \tag{11}
\end{equation*}
$$

which completes the proof.

Remark 4. Theorem 3 implies that the convergence rate of gradient descent with convex objective function is $O(1 / k)$. Equivalently, to achieve an accuracy $\epsilon>0$, such that $f\left(\mathbf{x}_{k}\right)-$ $f\left(\mathbf{x}^{*}\right) \leq \epsilon$, we need to run gradient decent for $O(1 / \epsilon)$ iterations.

1.2 Nesterov Acceleration

Instead of using the update equation in (1), an alternative method to improve the convergence is to use Nesterov's accelerated gradient (NAG), with the update in the k-th iteration:

$$
\begin{align*}
\mathbf{y}_{k} & =\mathbf{x}_{k}+\frac{2}{k+2}\left(\mathbf{x}_{k}-\mathbf{x}_{k-1}\right) \tag{12}\\
\mathbf{x}_{k+1} & =\mathbf{x}_{k}-\alpha \nabla f\left(\mathbf{y}_{k}\right)
\end{align*}
$$

This achieves

$$
\begin{equation*}
f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}^{*}\right) \leq \frac{c}{k^{2}} \tag{13}
\end{equation*}
$$

where $c>0$ is a constant. Obviously, NAG achieves a convergence rate $O\left(1 / k^{2}\right)$. Equivalently, to achieve an ϵ-solution, such that $f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}^{*}\right) \leq \epsilon$, we need to run NAG for $O(1 / \sqrt{\epsilon})$ iterations.

1.3 Drawbacks of Gradient Descent

There are two major drawbacks of gradient descent: ${ }^{1}$

1. The convergence is slow. As we can see from Theorem 3, the convergence rate of gradient descent for convex function is $O(1 / k)$, rather than $O\left(1 / k^{2}\right)$.
2. It is usually difficult to know the Lipschitz constant L and choose the fixed step size α.

There are some remedies to the choice of step size. Here, we introduce two of them:

1.3.1 Backtracking Line Search

```
Algorithm 1 Gradient Descent with Backtracking Line Search
Require: \(\mathbf{x}_{0}, \beta \in(0,1)\)
Ensure: \(\mathbf{x}_{K}\)
    for \(k=0, \cdots, K-1\) do
        \(\alpha:=1\)
        while \(f\left(\mathbf{x}_{k+1}\right)-f\left(\mathbf{x}_{k}\right) \leq-\frac{\alpha}{2}\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2}\) do
            \(\alpha:=\beta \alpha\)
        end while
        \(\mathbf{x}_{k+1}:=\mathbf{x}_{k}-\alpha \nabla f\left(\mathbf{x}_{k}\right)\)
    end for
```


1.3.2 Adaptive Learning Rate

Another way to select the learning rate is to use adaptive learning rate. One example is

$$
\begin{equation*}
\alpha_{k}=\min \left\{\frac{\left\|\mathbf{x}_{k}-\mathbf{x}_{k-1}\right\|}{2\left\|\nabla f\left(\mathbf{x}_{k}\right)-\nabla f\left(\mathbf{x}_{k-1}\right)\right\|}, \sqrt{1+\frac{\alpha_{k-1}}{\alpha_{k-2}}} \alpha_{k-1}\right\} . \tag{14}
\end{equation*}
$$

2 Gradient Descent with Constraints

Now, we consider the optimization problem with constraints:

$$
\begin{equation*}
\underset{\mathbf{x} \in \mathcal{C}}{\operatorname{minimize}} \quad f(\mathbf{x}) \tag{15}
\end{equation*}
$$

where \mathcal{C} is a convex and closed set. Notice that interesting problems usually have the optimal solution on the boundary of \mathcal{C}. Otherwise, we can simply solve an unconstrained problem.

2.1 Optimality Condition

Theorem 5. For the problem in (15), we have the following optimality conditions:

- For differentiable $f(\cdot)$, if $\mathbf{x}^{*} \in \underset{\mathbf{x} \in \mathcal{C}}{\arg \min } f(\mathbf{x})$, then $\left\langle\nabla f\left(\mathbf{x}^{*}\right), \mathbf{x}-\mathbf{x}^{*}\right\rangle \geq 0$ for all $\mathbf{x} \in \mathcal{C}$.
- If $f(\cdot)$ is differentiable and convex, then $\mathbf{x}^{*} \in \underset{\mathbf{x} \in \mathcal{C}}{\arg \min } f(\mathbf{x})$ if and only if $\left\langle\nabla f\left(\mathbf{x}^{*}\right), \mathbf{x}-\right.$ $\left.\mathbf{x}^{*}\right\rangle \geq 0$ for all $\mathbf{x} \in \mathcal{C}$.

[^0]Proof. Let us start by proving the first part. For any $\mathbf{x} \in \mathcal{C}$, since \mathcal{C} is convex, we have

$$
\begin{equation*}
\mathbf{x}^{*}+\theta\left(\mathbf{x}-x^{*}\right) \in \mathcal{C} \tag{16}
\end{equation*}
$$

for any $\theta \in[0,1]$. Since \mathbf{x}^{*} is the optimal solution, we have

$$
\begin{equation*}
f\left(\mathbf{x}^{*}+\theta\left(\mathbf{x}-\mathbf{x}^{*}\right)\right) \geq f(\mathbf{x}) . \tag{17}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\left\langle\nabla f\left(\mathbf{x}^{*}\right), \mathbf{x}-\mathbf{x}^{*}\right\rangle=\lim _{\theta \rightarrow 0} \frac{f\left(\mathbf{x}^{*}+\theta\left(\mathbf{x}-\mathbf{x}^{*}\right)\right)-f(\mathbf{x})}{\theta} \geq 0, \tag{18}
\end{equation*}
$$

which proves the first part.
For the second part, the sufficiency is obvious from the the first part. Now, we prove the necessity. Assume $\left\langle\nabla f\left(\mathbf{x}^{*}\right), \mathbf{x}-\mathbf{x}^{*}\right\rangle \geq 0$ holds for all $\mathbf{x} \in \mathcal{C}$. Since $f(\cdot)$ is convex, by using the first-order condition

$$
\begin{equation*}
f(\mathbf{x}) \geq f\left(\mathbf{x}^{*}\right)+\left\langle\nabla f\left(\mathbf{x}^{*}\right), \mathbf{x}-\mathbf{x}^{*}\right\rangle \geq f\left(\mathbf{x}^{*}\right), \forall \mathbf{x} \in \mathcal{C} \tag{19}
\end{equation*}
$$

which completes the proof.

[^0]: ${ }^{1}$ We restrict our discussion to the case in Theorem 3.

