Spring, 2022

Lecture #4 — Feb. 9th, 2022

Lecturer: Yura Malitsky

Scribe: Jianan Bai

1 Gradient Descent with Convex Objective Function

During last lecture, we introduced the gradient descent algorithm

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k), \quad \text{for } k = 0, 1, \cdots, K-1, \tag{1}$$

and analyzed the convergence with fixed step size when the objective function $f : \mathbb{R}^n \to \mathbb{R}$ is *L-smooth* and *bounded below* by f^* . Now, we provide the convergence analysis of gradient descend when the $f(\cdot)$ is also convex.

1.1 Convergence Analysis

Assumption 1. (*L*-Smoothness) The objective function is differentiable and *L*-smooth, such that $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \leq L \|\mathbf{x} - \mathbf{y}\|$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Assumption 2. (Convexity) The objective function is convex, such that $\theta f(\mathbf{x}) + (1-\theta)f(\mathbf{y}) \ge f(\theta \mathbf{x} + (1-\theta)\mathbf{y})$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\theta \in [0, 1]$.

Theorem 3. Under Assumptions 1 and 2, the gradient descent algorithm, with fixed step size $\alpha_k = \alpha \in (0, 1/L]$, gives

$$f(\mathbf{x}_K) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|^2}{2\alpha K},\tag{2}$$

where \mathbf{x}^* is the optimal solution, i.e., $\mathbf{x}^* = \underset{\mathbf{x} \in \mathbb{R}^n}{\arg \min f(\mathbf{x})}$.

Proof. First consider

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 = \|\mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k) - \mathbf{x}^*\|^2$$

= $\|\mathbf{x}_k - \mathbf{x}^*\|^2 - 2\alpha \langle \nabla f(\mathbf{x}_k), \mathbf{x}_k - \mathbf{x}^* \rangle + \alpha^2 \|\nabla f(\mathbf{x}_k)\|^2.$ (3)

Using the first-order condition of convex functions, we have

$$\langle \nabla f(\mathbf{x}_k), \mathbf{x}_k - \mathbf{x}^* \rangle \ge f(\mathbf{x}_k) - f(\mathbf{x}^*).$$
 (4)

Meanwhile, by utilizing L-smoothness

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|^2$$

= $f(\mathbf{x}_k) - \alpha \left(1 - \frac{L\alpha}{2}\right) \|\nabla f(\mathbf{x}_k)\|^2$
 $\stackrel{(a)}{\leq} f(\mathbf{x}_k) - \frac{\alpha}{2} \|\nabla f(\mathbf{x}_k)\|^2,$ (5)

where (a) follows by the condition $\alpha \in (0, 1/L]$. The above equation can be rearranged as

$$\|\nabla f(\mathbf{x}_k)\|^2 \le -\frac{2}{\alpha} \left(f(\mathbf{x}_{k+1}) - f(\mathbf{x}_k) \right).$$
(6)

Substitute (4) and (6) into (3), we obtain

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 \le \|\mathbf{x}_k - \mathbf{x}^*\|^2 - 2\alpha \left(f(\mathbf{x}_k) - f(\mathbf{x}^*)\right) - 2\alpha \left(f(\mathbf{x}_{k+1}) - f(\mathbf{x}_k)\right) = \|\mathbf{x}_k - \mathbf{x}^*\|^2 - 2\alpha \left(f(\mathbf{x}_{k+1}) - f(\mathbf{x}^*)\right).$$
(7)

Since (7) holds for all $k = 0, 1, \dots, K - 1$, we can sum the LHS and RHS over k, i.e.,

$$\sum_{k=0}^{K-1} \|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 \le \sum_{k=0}^{K-1} \|\mathbf{x}_k - \mathbf{x}^*\|^2 - 2\alpha \sum_{k=0}^{K-1} \left(f(\mathbf{x}_{k+1}) - f(\mathbf{x}^*)\right),\tag{8}$$

which can be rearranged as

$$2\alpha \sum_{k=0}^{K-1} \left(f(\mathbf{x}_{k+1}) - f(\mathbf{x}^*) \right) \le \|\mathbf{x}_0 - \mathbf{x}^*\|^2 - \|\mathbf{x}_K - \mathbf{x}^*\|^2 \\ \le \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$
(9)

Notice that, as indicated by (5), $\{f(\mathbf{x}_k)\}$ is non-increasing sequence. Therefore, the LHS of (9) can be lower bounded by

$$2\alpha \sum_{k=0}^{K-1} \left(f(\mathbf{x}_{k+1}) - f(\mathbf{x}^*) \right) \ge 2\alpha K \left(f(\mathbf{x}_{k+1}) - f(\mathbf{x}^*) \right).$$
(10)

After substituting the above inequality into (9), we obtain

$$f(\mathbf{x}_K) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|^2}{2\alpha K},\tag{11}$$

which completes the proof.

Remark 4. Theorem 3 implies that the convergence rate of gradient descent with convex objective function is O(1/k). Equivalently, to achieve an accuracy $\epsilon > 0$, such that $f(\mathbf{x}_k) - f(\mathbf{x}^*) \leq \epsilon$, we need to run gradient decent for $O(1/\epsilon)$ iterations.

1.2 Nesterov Acceleration

Instead of using the update equation in (1), an alternative method to improve the convergence is to use *Nesterov's accelerated gradient* (NAG), with the update in the k-th iteration:

$$\mathbf{y}_{k} = \mathbf{x}_{k} + \frac{2}{k+2}(\mathbf{x}_{k} - \mathbf{x}_{k-1}),$$

$$\mathbf{x}_{k+1} = \mathbf{x}_{k} - \alpha \nabla f(\mathbf{y}_{k}).$$
 (12)

This achieves

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \frac{c}{k^2},\tag{13}$$

where c > 0 is a constant. Obviously, NAG achieves a convergence rate $O(1/k^2)$. Equivalently, to achieve an ϵ -solution, such that $f(\mathbf{x}_k) - f(\mathbf{x}^*) \leq \epsilon$, we need to run NAG for $O(1/\sqrt{\epsilon})$ iterations.

1.3 Drawbacks of Gradient Descent

There are two major drawbacks of gradient descent:¹

- 1. The convergence is slow. As we can see from Theorem 3, the convergence rate of gradient descent for convex function is O(1/k), rather than $O(1/k^2)$.
- 2. It is usually difficult to know the Lipschitz constant L and choose the fixed step size α .

There are some remedies to the choice of step size. Here, we introduce two of them:

1.3.1 Backtracking Line Search

Algorithm 1 Gradient Descent with Backtracking Line Search Require: $\mathbf{x}_0, \beta \in (0, 1)$ Ensure: \mathbf{x}_K for $k = 0, \dots, K - 1$ do $\alpha := 1$ while $f(\mathbf{x}_{k+1}) - f(\mathbf{x}_k) \leq -\frac{\alpha}{2} \|\nabla f(\mathbf{x}_k)\|^2$ do $\alpha := \beta \alpha$ end while $\mathbf{x}_{k+1} := \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k)$ end for

1.3.2 Adaptive Learning Rate

Another way to select the learning rate is to use adaptive learning rate. One example is

$$\alpha_k = \min\left\{\frac{\|\mathbf{x}_k - \mathbf{x}_{k-1}\|}{2\|\nabla f(\mathbf{x}_k) - \nabla f(\mathbf{x}_{k-1})\|}, \sqrt{1 + \frac{\alpha_{k-1}}{\alpha_{k-2}}}\alpha_{k-1}\right\}.$$
(14)

2 Gradient Descent with Constraints

Now, we consider the optimization problem with constraints:

$$\begin{array}{ll} \underset{\mathbf{x}\in\mathcal{C}}{\operatorname{minimize}} & f(\mathbf{x}), \end{array} \tag{15}$$

where C is a *convex* and *closed* set. Notice that interesting problems usually have the optimal solution on the boundary of C. Otherwise, we can simply solve an unconstrained problem.

2.1 Optimality Condition

Theorem 5. For the problem in (15), we have the following optimality conditions:

- For differentiable $f(\cdot)$, if $\mathbf{x}^* \in \underset{\mathbf{x} \in \mathcal{C}}{\operatorname{arg min}} f(\mathbf{x})$, then $\langle \nabla f(\mathbf{x}^*), \mathbf{x} \mathbf{x}^* \rangle \geq 0$ for all $\mathbf{x} \in \mathcal{C}$.
- If f(·) is differentiable and convex, then x^{*} ∈ arg min f(x) if and only if ⟨∇f(x^{*}), x x^{*}⟩ ≥ 0 for all x ∈ C.

 $^{^{1}}$ We restrict our discussion to the case in Theorem 3.

Proof. Let us start by proving the first part. For any $\mathbf{x} \in \mathcal{C}$, since \mathcal{C} is convex, we have

$$\mathbf{x}^* + \theta(\mathbf{x} - x^*) \in \mathcal{C},\tag{16}$$

for any $\theta \in [0,1]$. Since \mathbf{x}^* is the optimal solution, we have

$$f(\mathbf{x}^* + \theta(\mathbf{x} - \mathbf{x}^*)) \ge f(\mathbf{x}).$$
(17)

Then,

$$\langle \nabla f(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle = \lim_{\theta \to 0} \frac{f(\mathbf{x}^* + \theta(\mathbf{x} - \mathbf{x}^*)) - f(\mathbf{x})}{\theta} \ge 0,$$
(18)

which proves the first part.

For the second part, the sufficiency is obvious from the the first part. Now, we prove the necessity. Assume $\langle \nabla f(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle \ge 0$ holds for all $\mathbf{x} \in \mathcal{C}$. Since $f(\cdot)$ is convex, by using the first-order condition

$$f(\mathbf{x}) \ge f(\mathbf{x}^*) + \langle \nabla f(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle \ge f(\mathbf{x}^*), \ \forall \mathbf{x} \in \mathcal{C},$$
(19)

which completes the proof.