1 Projected gradient descent

During the last lecture, we introduced the optimality condition for a convex function:

- $\left\{\begin{array}{l}f \text { is convex and differentiable } \\ \mathbf{x}^{*} \in \underset{\mathbf{x} \in \mathcal{C}}{\arg \min } f(\mathbf{x})\end{array} \Leftrightarrow\left\langle\nabla f\left(\mathbf{x}^{*}\right), \mathbf{x}-\mathbf{x}^{*}\right\rangle \geq 0\right.$ for all $\mathbf{x} \in \mathcal{C}$.
where \mathcal{C} is closed and convex, $\mathcal{C} \subset \mathbb{R}^{n}$. Then, how to solve the problem:

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathcal{C}} f(\mathbf{x}) \tag{1}
\end{equation*}
$$

1.1 Projection of gradient

If we have a convex closed set \mathcal{C}, we define an operator

$$
\begin{equation*}
\mathbf{P}_{\mathbf{C}} \mathbf{x}=\underset{\mathbf{y} \in \mathcal{C}}{\arg \min }\|\mathbf{y}-\mathbf{x}\| . \tag{2}
\end{equation*}
$$

where the function $\|\mathbf{y}-\mathbf{x}\|$ is special - this is coercive function.
Definition 1. A coercive function is a function $g(\mathbf{y})$ that "grows rapidly", i.e.

$$
\begin{equation*}
i f\|\mathbf{y}\| \rightarrow \infty \Rightarrow\|g(\mathbf{y})\| \rightarrow \infty \tag{3}
\end{equation*}
$$

Why the solution of (1) exists:

- closeness of \mathcal{C};
- convexity of \mathcal{C} that gives uniqueness of the solution;
- coercive function $\|\mathbf{y}-\mathbf{x}\|$.

How to compute it using given set \mathcal{C} ? There are several cases:

- \mathcal{C} is a unit ball, $\mathcal{C}=B(0,1) \Rightarrow$ solution: $\mathbf{P}_{\mathbf{C}} \mathbf{x}= \begin{cases}\frac{\mathbf{x}}{\|\mathbf{x}\|} & \text { if }\|\mathbf{x}\|>1, \\ \mathbf{x} & \text { otherwise } .\end{cases}$
- \mathcal{C} is a hyperplane, $\mathcal{C}:\{\mathbf{x}:\langle\mathbf{a}, \mathbf{x}\rangle=b\} \Rightarrow$ solution: $\mathbf{P}_{\mathbf{C}}=\mathbf{x}-\frac{b-\langle\mathbf{a}, \mathbf{x}\rangle}{\|\mathbf{a}\|^{2}} \mathbf{a}$

1.2 Characteristic property of projection

$\overline{\mathbf{x}}$ is projection of \mathbf{x} on the \mathcal{C} if and only if $\langle\overline{\mathbf{x}}-\mathbf{x}, \mathbf{y}-\mathbf{x}\rangle \geq 0$, i.e.

$$
\begin{equation*}
\overline{\mathbf{x}}=\mathbf{P}_{\mathrm{C}} \mathbf{x} \Leftrightarrow\langle\overline{\mathbf{x}}-\mathbf{x}, \mathbf{y}-\mathbf{x}\rangle \geq 0 \tag{4}
\end{equation*}
$$

for any $\mathbf{y} \in \mathcal{C}$. During the previous lectures, we got the gradient descent algorithm

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k} \nabla f\left(\mathbf{x}_{k}\right), \quad \text { for } k=0,1, \cdots, K-1 . \tag{5}
\end{equation*}
$$

But now, we are going to consider projection of gradient descent to the set \mathcal{C} :

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{P}_{\mathbf{C}}\left(\mathbf{x}_{k}-\alpha_{k} \nabla f\left(\mathbf{x}_{k}\right)\right), \quad \text { for } k=0,1, \cdots, K-1 . \tag{6}
\end{equation*}
$$

Proof. Let's take an example $f(\mathbf{y})=\frac{1}{2}\|\mathbf{y}-\mathbf{x}\|^{2}$. For this function $\bar{x}=\arg \min f(\mathbf{y})$. Since f is convex $\Rightarrow \quad\langle\nabla f(\overline{\mathbf{x}}), \mathbf{y}-\overline{\mathbf{x}}\rangle \geq 0 \quad \forall \mathbf{y} \in \mathcal{C}$. The gradient of our example: $\nabla f(\mathbf{y})=\mathbf{y}-\mathbf{x}$. If to substitute $\overline{\mathbf{x}}$ instead of \mathbf{y}, we can observe the same equality.

1.3 Nonexpensive property of projection

We can derive the following inequality:

$$
\begin{equation*}
\left\|P_{C} x-P_{C} y\right\| \leq\|x-y\|, \tag{7}
\end{equation*}
$$

i.e. the distance between images $P_{C} x$ and $P_{C} y$ is always less or equal than the distance between preimages x and y.

Proof. Let's consider two points x and y , for which $\left\langle P_{c x}-x, P_{c y}-P_{c x}\right\rangle \geq 0$ and $\left\langle P_{c y}-y, P_{c x}-\right.$ $\left.P_{c y}\right\rangle \geq 0$. After summarization and simplification the result correspond to (7).

1.4 Projected gradient descent algorithm

Let's consider projection of gradient descent method (6). Assume that f is differentiable and convex, \mathcal{C} is closed. We're going to apply the main characterization property (4):

$$
\begin{equation*}
\left\langle\mathbf{x}_{k+1}-\mathbf{x}_{k}+\alpha \nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}-\mathbf{x}_{k+1}\right\rangle \geq 0 . \quad \forall \mathbf{x} \in \mathcal{C} \tag{8}
\end{equation*}
$$

Split it into two parts

$$
\begin{equation*}
\left\langle\mathbf{x}_{k+1}-\mathbf{x}_{k}, \mathbf{x}-\mathbf{x}_{k+1}\right\rangle+\alpha\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}-\mathbf{x}_{k+1}\right\rangle \geq 0 . \tag{9}
\end{equation*}
$$

Using the definition of squared norm of sum

$$
\begin{equation*}
2\langle\mathbf{a}, \mathbf{b}\rangle=\|\mathbf{a}+\mathbf{b}\|^{2}-\|\mathbf{a}\|^{2}-\|\mathbf{b}\|^{2}, \tag{10}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\left\|\mathbf{x}_{k}-\mathbf{x}\right\|^{2}-\left\|\mathbf{x}_{k+1}-\mathbf{x}\right\|^{2}-\left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|^{2}+2 \alpha\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}-\mathbf{x}_{k+1}\right\rangle \geq 0 \tag{11}
\end{equation*}
$$

Let's concentrate on the last term of (11) and split the inner product into two ones

$$
\begin{equation*}
\left\langle\nabla f\left(\mathbf{x}_{k+1}\right), \mathbf{x}-\mathbf{x}_{k+1}\right\rangle=\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}-\mathbf{x}_{k}\right\rangle+\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}_{k}-\mathbf{x}_{k+1}\right\rangle, \tag{12}
\end{equation*}
$$

where the term $\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}-\mathbf{x}_{k+1}\right\rangle$ is constrained from above, the term $\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}-\mathbf{x}_{k}\right\rangle \leq$ $f(\mathbf{x})-f\left(\mathbf{x}_{k}\right)$ according to the main inequality of convexity.
Considering Decent lemma definition

$$
\begin{equation*}
0 \leq f(\mathbf{y})-f(\mathbf{x})-\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle \leq \frac{L}{2}\|\mathbf{y}-\mathbf{x}\|^{2}, \tag{13}
\end{equation*}
$$

we can get

$$
\begin{equation*}
f\left(x_{\mathbf{x}+1}\right)-f\left(\mathbf{x}_{k}\right)-\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}_{k+1}-\mathbf{x}_{k}\right\rangle \leq \frac{L}{2}\left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|^{2} . \tag{14}
\end{equation*}
$$

Rewrite (12) in the form of $\left\langle\nabla f\left(\mathbf{x}_{k+1}, \mathbf{x}-\mathbf{x}_{k+1}\right\rangle \leq f(\mathbf{x})-f\left(\mathbf{x}_{k}\right)+\frac{L}{2}\left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|^{2}-f\left(\mathbf{x}_{k+1}\right)-\right.$ $f\left(\mathrm{x}_{k}\right)$. Consequently,

$$
\begin{equation*}
\left\langle\nabla f\left(\mathbf{x}_{k+1}, \mathbf{x}-\mathbf{x}_{k+1}\right\rangle \leq f(\mathbf{x})-f\left(\mathbf{x}_{k+1}\right)+\frac{L}{2}\left\|\mathrm{x}_{k+1}-\mathrm{x}_{k}\right\|^{2} .\right. \tag{15}
\end{equation*}
$$

Now, when we estimated all terms of (12), rewrite (11) in the form of

$$
\begin{equation*}
\left\|\mathbf{x}_{k}-\mathbf{x}\right\|^{2}-\left\|\mathbf{x}_{k+1}-\mathbf{x}\right\|^{2}-\left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|^{2}+2 \alpha\left(f(\mathbf{x})-f\left(\mathbf{x}_{k+1}\right)\right)+\alpha L\left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|^{2} \geq 0 . \tag{16}
\end{equation*}
$$

Considering that $\alpha \leq \frac{1}{L}$,

$$
\begin{equation*}
\left\|\mathbf{x}_{k}-\mathbf{x}\right\|^{2}+2 \alpha\left(f\left(\mathbf{x}_{k+1}\right)-f(\mathbf{x})\right) \leq\left\|\mathbf{x}_{k}-\mathbf{x}\right\|^{2} . \tag{17}
\end{equation*}
$$

Until this moment x was an arbitrary point. However, it to say that $\mathbf{x}=\mathbf{x}^{*}$ that is solution, then we obtain

$$
\begin{equation*}
\left\|\mathrm{x}_{k}-\mathrm{x}^{*}\right\|^{2}+2 \alpha\left(f\left(\mathrm{x}_{k+1}\right)-f\left(\mathrm{x}^{*}\right)\right) \leq\left\|\mathrm{x}_{k}-\mathrm{x}^{*}\right\|^{2} . \tag{18}
\end{equation*}
$$

Assume that $\mathbf{x}_{k} \rightarrow \mathbf{x}^{*} \Rightarrow$, we obtain the equation of projected gradient descent:

$$
\begin{equation*}
f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}^{*}\right) \leq \frac{\left\|\mathbf{x}_{0}-\mathbf{x}^{*}\right\|^{2}}{2 \alpha} . \tag{19}
\end{equation*}
$$

2 Subgradient and subdifferentials

2.1 Subgradient

Let's allow a function to take value $+\infty$, i.e. $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$.
Definition 2. Indicator function is defined as

$$
\delta_{c}(x)= \begin{cases}0 & x, \in \mathcal{C}, \tag{20}\\ +\infty, & x \notin \mathcal{C},\end{cases}
$$

where \mathcal{C} is closed set.
We're going to minimize

$$
\begin{equation*}
F(\mathbf{x})=\min _{x}\left[f(\mathbf{x})+\delta_{c}(\mathbf{x})\right], \tag{21}
\end{equation*}
$$

where $F: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$.
Definition 3. Domain of a function is

$$
\begin{equation*}
\operatorname{dom}(\mathrm{f})=\{\mathrm{x}: f(x)<+\infty\} . \tag{22}
\end{equation*}
$$

Before we considered differentiable functions. Now, our function f is non-smooth, i.e. is not differentiable (at two points in our case).

Definition 4. $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}, \mathbf{x} \in \operatorname{dom}(\mathrm{f}), \mathbf{u}$ is a subgradient of function f at x, if

$$
\begin{equation*}
f(\mathbf{y})-f(\mathbf{x}) \geq\langle\mathbf{u}, \mathbf{y}-\mathbf{x}\rangle \forall y \in \mathbf{R}^{n} . \tag{23}
\end{equation*}
$$

2.2 Subdifferential

Definition 5. Subdifferential of f at $\mathbf{x}: \partial f(\mathbf{x})=\{\mathbf{u}$ is subgradient $\}$.
Remark 6. If f is differentiable at $\mathbf{x} \Rightarrow \partial f(\mathbf{x})=\{\nabla f(\mathbf{x}\}$.

Let's consider an example $f(\mathbf{x})=\max \left\{f_{1}(\mathbf{x}), f_{2}(\mathbf{x})\right\}, f_{i}(\mathbf{x})$ is diff.

$$
\partial f(\mathbf{x})= \begin{cases}\nabla f_{1}(\mathbf{x}) & \text { if } f_{1}(\mathbf{x})>f_{2}(\mathbf{x}) \\ \nabla f_{2}(\mathbf{x}) & \text { if } f_{1}(\mathbf{x})<f_{2}(\mathbf{x}) \\ \operatorname{conv}\left\{\nabla f_{1}(\mathbf{x}), \nabla f_{2}(\mathbf{x})\right\} & \text { otherwise }\end{cases}
$$

where $\operatorname{conv}\left\{\nabla f_{1}(\mathbf{x}), \nabla f_{2}(\mathbf{x})\right\}$ means convex combinations, i.e. $\quad\left\{\mathbf{y}: \mathbf{y}=\alpha \nabla f_{1}(\mathbf{x})+(1-\right.$ $\left.\alpha) \nabla f_{2}(\mathbf{x})\right\}$. We're going to minimize function

$$
\min _{\mathbf{x}} f(\mathbf{x}),
$$

where f is convex.

$$
\mathbf{x} \in \underset{\mathbf{x}}{\arg \min } f(\mathbf{x}) \Leftrightarrow \mathbf{0} \in \partial f(\mathbf{x})
$$

Proof. Using the definition of a differential of a subgradient, we can obtain

$$
\mathbf{0} \in \partial f(\mathbf{x}) \Rightarrow f(\mathbf{y})-f(\mathbf{x}) \geq\langle\mathbf{0}, \mathbf{y}-\mathbf{x}\rangle=\mathbf{0}, \quad \forall \mathbf{x}, \mathbf{y} .
$$

2.3 Property of subdifferentials - Monotonicity

Suppose we have two subgradients

$$
\left\{\begin{array}{l}
\mathbf{g}_{\mathbf{x}} \in \partial f(\mathbf{x}), \tag{24}\\
\mathbf{g}_{\mathbf{y}} \in \partial f(\mathbf{y}),
\end{array} \quad \Leftrightarrow \quad\left\langle\mathbf{g}_{\mathbf{x}}-\mathbf{g}_{\mathbf{y}}, \mathbf{x}-\mathbf{y}\right\rangle \geq 0\right.
$$

Proof. Since $\mathbf{g}_{\mathbf{x}}$ is a subgradient, then

$$
f(\mathbf{y})-f(\mathbf{x}) \geq\left\langle\mathbf{g}_{\mathbf{x}}, \mathbf{y}-\mathbf{x}\right\rangle .
$$

Since $\mathbf{g}_{\mathbf{y}}$ is a subgradient as well, then

$$
f(\mathbf{x})-f(\mathbf{y}) \geq\left\langle\mathbf{g}_{\mathbf{y}}, \mathbf{x}-\mathbf{y}\right\rangle .
$$

After summarization of the last two inequalities, we can obtain (24).

2.4 Subgradient method

To solve the problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})
$$

we can use subgradient method or subgradient method with constrain.
Definition 7. Subgradient method

$$
\left\{\begin{array}{l}
\mathbf{g}_{\mathbf{k}} \in \partial f\left(\mathbf{x}_{k}\right), \tag{25}\\
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k} \mathbf{g}_{\mathbf{k}} .
\end{array}\right.
$$

Definition 8. Subgradient method with constrain

$$
\left\{\begin{array}{l}
\mathbf{g}_{\mathbf{k}} \in \partial f\left(\mathbf{x}_{k}\right), \tag{26}\\
\mathbf{x}_{k+1}=\mathbf{P}_{\mathbf{C}} \mathbf{x}\left(\mathbf{x}_{k}-\alpha_{k} \mathbf{g}_{\mathbf{k}}\right) .
\end{array}\right.
$$

