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1 Projected gradient descent
During the last lecture, we introduced the optimality condition for a convex function:

•

f is convex and differentiable
x∗ ∈ arg min

x∈C
f(x) ⇔ ⟨∇f(x∗), x − x∗⟩ ≥ 0 for all x ∈ C.

where C is closed and convex, C ⊂ Rn. Then, how to solve the problem:

min
x∈C

f(x) (1)

1.1 Projection of gradient

If we have a convex closed set C, we define an operator

PCx = arg min
y∈C

∥y − x∥ . (2)

where the function ∥y − x∥ is special - this is coercive function.

Definition 1. A coercive function is a function g(y) that "grows rapidly", i.e.

if ∥y∥ → ∞ ⇒ ∥g(y)∥ → ∞. (3)

Why the solution of (1) exists:

• closeness of C;

• convexity of C that gives uniqueness of the solution;

• coercive function ∥y − x∥.

How to compute it using given set C? There are several cases:

• C is a unit ball, C = B(0, 1) ⇒ solution: PCx =


x

∥x∥ if ∥x∥ > 1,

x otherwise.

• C is a hyperplane, C : {x : ⟨a, x⟩ = b} ⇒ solution: PCx = x − b−⟨a,x⟩
∥a∥2 a

1.2 Characteristic property of projection

x̄ is projection of x on the C if and only if ⟨x̄ − x, y − x⟩ ≥ 0, i.e.

x̄ = PCx ⇔ ⟨x̄ − x, y − x⟩ ≥ 0 (4)

for any y ∈ C. During the previous lectures, we got the gradient descent algorithm

xk+1 = xk − αk∇f(xk), for k = 0, 1, · · · , K − 1. (5)

But now, we are going to consider projection of gradient descent to the set C:

xk+1 = PCx(xk − αk∇f(xk)), for k = 0, 1, · · · , K − 1. (6)
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Proof. Let’s take an example f(y) = 1
2 ∥y − x∥2. For this function x̄ = arg min

y∈C
f(y). Since

f is convex ⇒ ⟨∇f(x̄), y − x̄⟩ ≥ 0 ∀y ∈ C. The gradient of our example: ∇f(y) = y − x.
If to substitute x̄ instead of y, we can observe the same equality.

1.3 Nonexpensive property of projection

We can derive the following inequality:

∥PCx − PCy∥ ≤ ∥x − y∥ , (7)

i.e. the distance between images PCx and PCy is always less or equal than the distance
between preimages x and y.

Proof. Let’s consider two points x and y, for which ⟨Pcx −x, Pcy −Pcx⟩ ≥ 0 and ⟨Pcy −y, Pcx −
Pcy⟩ ≥ 0. After summarization and simplification the result correspond to (7).

1.4 Projected gradient descent algorithm

Let’s consider projection of gradient descent method (6). Assume that f is differentiable and
convex, C is closed. We’re going to apply the main characterization property (4):

⟨xk+1 − xk + α∇f(xk), x − xk+1⟩ ≥ 0. ∀x ∈ C (8)

Split it into two parts

⟨xk+1 − xk, x − xk+1⟩ + α⟨∇f(xk), x − xk+1⟩ ≥ 0. (9)

Using the definition of squared norm of sum

2⟨a, b⟩ = ∥a + b∥2 − ∥a∥2 − ∥b∥2 , (10)

we obtain

∥xk − x∥2 − ∥xk+1 − x∥2 − ∥xk+1 − xk∥2 + 2α⟨∇f(xk), x − xk+1⟩ ≥ 0. (11)

Let’s concentrate on the last term of (11) and split the inner product into two ones

⟨∇f(xk+1), x − xk+1⟩ = ⟨∇f(xk), x − xk⟩ + ⟨∇f(xk), xk − xk+1⟩, (12)

where the term ⟨∇f(xk), x − xk+1⟩ is constrained from above, the term ⟨∇f(xk), x − xk⟩ ≤
f(x) − f(xk) according to the main inequality of convexity.
Considering Decent lemma definition

0 ≤ f(y) − f(x) − ⟨∇f(x), y − x⟩ ≤ L

2 ∥y − x∥2 , (13)

we can get
f(xx+1) − f(xk) − ⟨∇f(xk), xk+1 − xk⟩ ≤ L

2 ∥xk+1 − xk∥2 . (14)

Rewrite (12) in the form of ⟨∇f(xk+1, x−xk+1⟩ ≤ f(x)−f(xk)+ L
2 ∥xk+1 − xk∥2 −f(xk+1)−

f(xk). Consequently,

⟨∇f(xk+1, x − xk+1⟩ ≤ f(x) − f(xk+1) + L

2 ∥xk+1 − xk∥2 . (15)
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Now, when we estimated all terms of (12), rewrite (11) in the form of

∥xk − x∥2 − ∥xk+1 − x∥2 − ∥xk+1 − xk∥2 + 2α(f(x) − f(xk+1)) + αL ∥xk+1 − xk∥2 ≥ 0. (16)

Considering that α ≤ 1
L ,

∥xk − x∥2 + 2α(f(xk+1) − f(x)) ≤ ∥xk − x∥2 . (17)

Until this moment x was an arbitrary point. However, it to say that x = x∗ that is solution,
then we obtain

∥xk − x∗∥2 + 2α(f(xk+1) − f(x∗)) ≤ ∥xk − x∗∥2 . (18)

Assume that xk → x∗ ⇒, we obtain the equation of projected gradient descent:

f(xk) − f(x∗) ≤ ∥x0 − x∗∥2

2α
. (19)

2 Subgradient and subdifferentials

2.1 Subgradient

Let’s allow a function to take value +∞, i.e. f : Rn → R̄.

Definition 2. Indicator function is defined as

δc(x) =
{

0 x, ∈ C,

+∞, x /∈ C,
(20)

where C is closed set.

We’re going to minimize
F (x) = min

x
[f(x) + δc(x)], (21)

where F : Rn → R̄.

Definition 3. Domain of a function is

dom(f) = {x : f(x) < +∞}. (22)

Before we considered differentiable functions. Now, our function f is non-smooth, i.e. is
not differentiable (at two points in our case).

Definition 4. f : Rn → R̄, x ∈ dom(f), u is a subgradient of function f at x, if

f(y) − f(x) ≥ ⟨u, y − x⟩∀y ∈ Rn. (23)

2.2 Subdifferential

Definition 5. Subdifferential of f at x : ∂f(x) = {u is subgradient}.

Remark 6. If f is differentiable at x ⇒ ∂f(x) = {∇f(x}.
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Let’s consider an example f(x) = max{f1(x), f2(x)}, fi(x) is diff.

∂f(x) =


∇f1(x) if f1(x) > f2(x),
∇f2(x) if f1(x) < f2(x),
conv{∇f1(x), ∇f2(x)} otherwise,

where conv{∇f1(x), ∇f2(x)} means convex combinations, i.e. {y : y = α∇f1(x) + (1 −
α)∇f2(x)}. We’re going to minimize function

min
x

f(x),

where f is convex.
x ∈ arg min

x
f(x) ⇔ 0 ∈ ∂f(x)

Proof. Using the definition of a differential of a subgradient, we can obtain

0 ∈ ∂f(x) ⇒ f(y) − f(x) ≥ ⟨0, y − x⟩ = 0, ∀x, y.

2.3 Property of subdifferentials - Monotonicity

Suppose we have two subgradients{
gx ∈ ∂f(x),
gy ∈ ∂f(y),

⇔ ⟨gx − gy, x − y⟩ ≥ 0. (24)

Proof. Since gx is a subgradient, then

f(y) − f(x) ≥ ⟨gx, y − x⟩.

Since gy is a subgradient as well, then

f(x) − f(y) ≥ ⟨gy, x − y⟩.

After summarization of the last two inequalities, we can obtain (24).

2.4 Subgradient method

To solve the problem
min
x∈Rn

f(x)

we can use subgradient method or subgradient method with constrain.

Definition 7. Subgradient method{
gk ∈ ∂f(xk),
xk+1 = xk − αkgk.

(25)

Definition 8. Subgradient method with constrain{
gk ∈ ∂f(xk),
xk+1 = PCx(xk − αkgk).

(26)
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