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1 Projected gradient descent

During the last lecture, we introduced the optimality condition for a convex function:

x* € arg min f(x) < (V) x—x7)
xeC

{ f is convex and differentiable

>0 forall xeC.

where C is closed and convex, C C R™. Then, how to solve the problem:

e /)

1.1 Projection of gradient
If we have a convex closed set C, we define an operator

Pcx = arg min ||y — x|| .
yeC

where the function ||y — x|| is special - this is coercive function.

Definition 1. A coercive function is a function g(y) that "grows rapidly’, i.e.

if Iyl = oo = llgy)Il — oc.

Why the solution of (1) exists:
 closeness of C;
« convexity of C that gives uniqueness of the solution;

e coercive function ||y — x||.

How to compute it using given set C? There are several cases:

e Cis a unit ball, C = B(0,1) = solution: Pcx = {”x”
X

o Cis a hyperplane, C : {x: (a,x) = b} = solution: Pcx =x —

1.2 Characteristic property of projection

x is projection of x on the C if and only if (X — x,y — x) >

if ||x|| > 1,

otherwise.

b—(a,x)
BE

0, i.e.

x=Pcxe (xX-xy—x%x)>0

for any y € C. During the previous lectures, we got the gradient descent algorithm

Xpp1 =X — o Vf(xg), fork=0,1,---

K — 1.

But now, we are going to consider projection of gradient descent to the set C:

xi1+1 = Pex(xg — axVf(xg)), fork=0,1,--- K —1.



Proof. Let’s take an example f(y) = 3 ||y — x||?. For this function Z = arg min f(y). Since

yeC
fis convex = (Vf(x),y —x) >0 Vy € C. The gradient of our example: Vf(y) =y — x.

If to substitute x instead of y, we can observe the same equality. O

1.3 Nonexpensive property of projection
We can derive the following inequality:

[1Pox = Poyl < [lz—yll, (7)

i.e. the distance between images Pox and Pgy is always less or equal than the distance
between preimages x and y.

Proof. Let’s consider two points x and y, for which (Pey —, Pey — Pey) > 0 and (Pey —y, Pey —
P.,) > 0. After summarization and simplification the result correspond to (7). O

1.4 Projected gradient descent algorithm

Let’s consider projection of gradient descent method (6). Assume that f is differentiable and
convex, C is closed. We're going to apply the main characterization property (4):

(Xpr1 — Xk + aVf(xg),x —xkp1) > 0. VxeC (8)
Split it into two parts
(Xpt1 — Xk, X — Xpey1) + (V f(xk),x — xg41) > 0. 9)
Using the definition of squared norm of sum
2(a,b) = la+b|* — [|a]|* - |b]?, (10)
we obtain
Ik — 117 = et = X2 = [x651 — X6l + 20(VF (), X = Xpp1) = 0. (11)

Let’s concentrate on the last term of (11) and split the inner product into two ones

(Vf(xpt1),x = xp41) = (VF(xk), x = xp) + (VF(Xk), Xk — Xk11), (12)

where the term (Vf(xg),x — Xg41) is constrained from above, the term (V f(xy),x — xi) <
f(x) — f(xx) according to the main inequality of convexity.
Considering Decent lemma definition

0< f(y) — £~ (VF(x)y — %) < o Iy~ xIP (13)

we can get

F@sr1) = Fxi) = (VF (%), X1 — %%) < = [|%p1 — x5 (14)

Rewrite (12) in the form of (V f(Xg41, X —Xp41) < f(x)— f(xx) + 5 [|xp11 — xp||> = f(Xpp1) —
f(xx). Consequently,

(V7 (k1% ~ Xp1) < F6) = Floki1) + 2 o — el (15)



Now, when we estimated all terms of (12), rewrite (11) in the form of
Ik — 112 — g1 — 112 — k1 — 2+ 20 F60) — F(rs1)) + L [xs1 — xi > 0. (16)
Considering that a < %,
Ik — X1 + 20(F(xp1) — F()) < e — ]2 (17)

Until this moment x was an arbitrary point. However, it to say that x = x* that is solution,
then we obtain
ek — X1 + 20(f (xk41) — f(x7)) < [r — x| (18)

Assume that x; — x* =, we obtain the equation of projected gradient descent:

%0 — x*|12
Flow) — £y < o= XE (19)
2 Subgradient and subdifferentials
2.1 Subgradient
Let’s allow a function to take value 400, i.e. f:R" — R.
Definition 2. Indicator function is defined as
amwz{im7j§£’ (20)
where C is closed set.
We’re going to minimize
F(x) = min[f(x) + 6.(x)], (21)
where F : R" — R.
Definition 3. Domain of a function is
dom(f) = {x: f(z) < +o0}. (22)

Before we considered differentiable functions. Now, our function f is non-smooth, i.e. is
not differentiable (at two points in our case).

Definition 4. f: R" — R,x € dom(f),u is a subgradient of function f at x, if
fy) = f(x) = (u,y —=x)Vy € R". (23)

2.2 Subdifferential
Definition 5. Subdifferential of f at x : 0f(x) = {u is subgradient}.

Remark 6. If f is differentiable at x = 0f(x) = {V f(x}.



Let’s consider an example f(x) = max{ fi(x), f2(x)}, fi(x) is diff.

Vi(x) if f1(x) > fa(x),
0f(x) = Vfa(x) if f1(x) < fa(x),
conv{V f1(x),Vfa(x)} otherwise,

where conv{V f1(x), V fa(x)} means convex combinations, i.e. {y :y = aVfi(x)+ (1 —
a)V fa(x)}. We're going to minimize function

min f (x),
where f is convex.

X € arg min f(x) < 0 € 9f(x)

X

Proof. Using the definition of a differential of a subgradient, we can obtain

Oef)f(x):>f(y)—f(x)2(O,y—x):0, vqu'

O
2.3 Property of subdifferentials - Monotonicity
Suppose we have two subgradients
gx € 0f(x),
{ (x) & (8x—8y,x—Yy)>0. (24)
gy € 9f(y),
Proof. Since gy is a subgradient, then
fy) = Fx) = (g y —x).
Since gy is a subgradient as well, then
fx) = f(y) = (gy:x—y)-
After summarization of the last two inequalities, we can obtain (24). O
2.4 Subgradient method
To solve the problem
min f(x)
we can use subgradient method or subgradient method with constrain.
Definition 7. Subgradient method
€0 ,
Xk+1 = Xk — Ok8k-
Definition 8. Subgradient method with constrain
€0 ,
X1 = Pox(xy — argk).
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