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1 Projected Subgradient Method

1.1 Update Rule

In order to discuss the analysis of the projected subgradient method, the definition of the
subgradient is introduced.

Definition 1. Consider a convex function f : C → R on the convex and closed set C ⊂ Rn.
The quantity u is a subgradient of the function f if

f(y) ≥ f(x) + ⟨u, y − x⟩ ∀y ∈ C. (1)

Now consider the optimization problem

min
x∈C

f(x) (2)

with the function f : Rn → R̄ convex and the convex and closed set C. The projected sub-
gradient method has the following update rule{

gk ∈ ∂f(xk)
xk+1 = PC (xk − αkgk)

(3)

whereas PC denoted the projection operator to the map C. The objective now is to develop
a convergence analysis of the method.

1.2 Analysis

Now consider a minimizer x∗ ∈ argminx∈Cf(x). It holds x∗ = PCx∗. Apart from that, the
projection operator has the property

∥PCx − PCy∥ ≤ ∥x − y∥ . (4)

Since convergence properties are the figure of merit the squared error ∥xk+1 − x∗∥2 will be
estimated. It holds

∥xk+1 − x∗∥2 = ∥PC (xk − αkgk) − PCx∗∥2 (5)
≤ ∥xk − αkgk − x∗∥2 (6)
= ∥xk − x∗∥2 − 2αk⟨gk, xk − x∗⟩ + α2

k ∥gk∥2 (7)
≤ ∥xk − x∗∥2 − 2αk (f(xk) − f(x∗)) + α2

k ∥gk∥2 (8)

whereas the definition of the subgradient was used in the last step. Let f∗ := f(x∗). Rear-
ranging the inequality yields

2αk (f(xk) − f∗) ≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + α2
k ∥gk∥2 . (9)
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Similarly to the previous lectures it is possible to sum up such that the result is

k∑
i=0

αi (f(xi) − f∗) ≤ 1
2 ∥x0 − x∗∥2 + 1

2

k∑
i=0

α2
i ∥gi∥2 . (10)

Consider the smallest term in the sum on the left hand side. It holds(
min

0≤i≤k
(f(xi) − f∗)

) k∑
i=0

αi ≤ 1
2 ∥x0 − x∗∥2 + 1

2

k∑
i=0

α2
i ∥gi∥2 . (11)

Let im ∈ N be chosen such that G := ∥gim∥ ≥ ∥gi∥ ∀i ∈ [0, k]. Then it holds

min
0≤i≤k

(f(xi) − f∗) ≤ ∥x0 − x∗∥2 + G2 ∑k
i=0 α2

i

2
∑k

i=0 αi

. (12)

Since fast convergence should be achieved the right hand side should converge to zero as fast
as possible. That means that a step size αi must be chosen such that the quantity in the
denominator

∑k
i=0 αi grows as fast as possible. Lets consider αk = c

kp for some c ≥ 0 and
p ∈ R and analyze some cases for p. For p = 1 it holds

k∑
i=0

αi → ∞ for k → ∞. (13)

The convergence speed is crucial. Therefore, the fact that the sum converges to infinity is not
enough. How fast it tends to infinity is relevant as well. Basic knowledge about harmonic
series tell us that the speed is log(k). This is heuristically a slowly growing function. So it is
worth it to try out another value for p. Lets choose p = 1

2 . For this value of p it is possible
to prove that the series goes to infinity in

√
k which is a faster growing function than log(k).

This implies

min
i

(f(xi) − f∗) ≤ ∥x0 − x∗∥ + c log(k)
2
√

k
= O

( log(k)√
k

)
(14)

and in order to achieve an accuracy ϵ about O
(

1
ϵ2

)
iterations are needed. Furthermore, we

need an optimal choice for the constant c. The set C is bounded by assumption. Therefore,
there exists a constant R such that diam(C) ≤ R. This implies ∥xk+1 − x∗∥2 ≤ R2 and

f(xk) − f∗ ≤ 1
2αk

∥xk − x∗∥2 − 1
2αk

∥xk+1 − x∗∥2 + αk

2 G2 (15)

= 1
2αk

∥xk − x∗∥2 − 1
2αk+1

∥xk+1 − x∗∥2 (16)

+ 1
2 ∥xk+1 − x∗∥2

( 1
αk+1

− 1
αk

)
+ αk

2 G2 (17)

≤ 1
2αk

∥xk − x∗∥2 − 1
2αk+1

∥xk+1 − x∗∥2 (18)

+ R2

2

( 1
αk+1

− 1
αk

)
+ αk

2 G2 (19)
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Now it is possible again to sum up and get a compact result. That is

k∑
i=0

(f(xi) − f∗) ≤ 1
2α0

∥x0 − x∗∥2 + R2

2

( 1
αk+1

− 1
α0

)
+ G2

2

k∑
i=0

αi (20)

≤ R2

2αk+1
+ G2

2

k∑
i=0

αi (21)

≤ R2√
k + 1

2c
+ G2

2 c
√

k + 1. (22)

This finally results in

min
i

(f(xi) − f∗) ≤ R2

2c
√

k + 1
+ G2c

2
√

k + 1
= O

( 1√
k

)
for c = R

G
. (23)

For this value of c it holds consequently

min
i

(f(xi) − f∗) ≤

√
RG

k + 1 . (24)
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