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1 Last Lecture: Stochastic Subgradient Method
During the last lecture, we introduced the stochastic subgradient method for the following
problem

minimize
x

f(x) = 1
n

n∑
i=1

fi(x). (1)

We analyzed the convergence by assuming the subgradient of fik
at xk, gk ∈ ∂fik

(xk), satisfies
E[||gk||] ≤ G. Now, we provide the convergence analysis of the stochastic gradient method
when the f(·) is L-smooth.

2 Stochastic Gradient with Lipschitz Smoothness
Assumption 1. We assume that f(·) is L-smooth.

We cannot guarantee our previous assumption: E[||gk||] ≤ G due to the Assumption 1.
Our new assumption is given as

Assumption 2. We assume that E[||∆fξ(x)||2] ≤ A + B||∆f(x)||2. We can rewrite our
assumption as follows

1
n

||∇f1(x)||2 + . . . + 1
n

||∇fn(x)||2 ≤ A + B

n2 ||∇f1(x) + . . . + ∇fn(x)||2. (2)

Here, when B = 0, we return to our previous assumption.

Assumption 3. We assume that 1 − αkLB
2 ≥ 1

2 ⇐⇒ αk ≤ 1
LB .

Assumption 4. We assume that f(x) is lower bounded as f(x) ≥ flow.

In addition, there is no information about the convexity of f(·). For the stochastic gradient
method, we apply Algorithm 1.

Algorithm 1 Stochastic Gradient Method
Require: x0
Ensure: xτ

for k = 0, · · · , K − 1 do
Sample ξk ∈ {1, 2, . . . , n} uniformly
Calculate xk+1 := xk − αk∇fξk

(xk)
end for
Sample τ from p.m.f. P{τ = t} = αt∑K

i=0 αi

Return xτ ▷ We have a concrete point.
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2.1 Convergence Analysis

Definition 5. (Descent Lemma)

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + L

2 ∥y − x∥2 (3)

We use descent lemma in our calculations. Let y, x replaced by xk+1, xk. Then, we can
write the following inequality

f (xk+1) ≤ f (xk) + ⟨∇f(xk), xk+1 − xk⟩ + L

2 ||xk+1 − xk||2

= f (xk) − αk⟨∇f(xk), ∇fξk
(xk)⟩ + α2

kL

2 ||∇fξk
(xk)||2,

(4)

where we use the equation, xk+1 = xk − αk∇fξk
(xk), to transform RHS as in the second line.

We calculate the conditional expectation of ∇fξk
(xk) as follows

Ek[∇fξk
(xk)] = 1

n
∇f1(xk) + . . . + 1

n
∇fn(xk) = ∇f(xk). (5)

Now, we take the conditional expectation of Eq. 4. w.r.t. k as follows

Ek[f (xk+1) − f (xk)] ≤ −αk||∇f(xk)||2 + α2
kL

2 Ek[||∇fξk
(xk)||2]. (6)

By using Assumption 2, Eq. 6 can be written as

Ek[f (xk+1) − f (xk)] ≤ −αk||∇f(xk)||2 + α2
kL

2 (A + B||∇f(xk)||2)

αk

(
1 − αkLB

2

)
||∇f(xk)||2 ≤ Ek[f(xk) − f(xk+1)] + α2

kLA

2

(7)

By using Assumption 3, Eq. 7 can be written as
αk

2 ||∇f(xk)||2 ≤ Ek[f(xk) − f(xk+1)] + α2
kAL

2 (8)

In Eq. 8, when we calculate the following expectation Ek[f(xk) − f(xk+1)] w.r.t. k, the term
f(xk+1) does not disappear due to k + 1. That is why we take expectation of Eq. 8 by
assuming xk is also random as follows

αk

2 Eξ1,...,ξK−1

[
||∇f(xk)||2

]
≤ Eξ1,...,ξK−1 [f(xk) − f(xk+1)] + α2

kAL

2 . (9)

Now, similar to the previous lectures it is possible to sum up as follows
K∑

i=0
αiEξ1,...,ξK−1

[
||∇f(xi)||2

]
≤ 2Eξ1,...,ξK−1 [f(x0) − f(xK+1)] + AL

K∑
i=0

α2
i . (10)

By using Assumption 4, Eq. 10 can be written as
K∑

i=0
αiEξ1,...,ξK−1

[
||∇f(xi)||2

]
≤ 2 (f(x0) − flow) + AL

K∑
i=0

α2
i . (11)

By using Eq. 11, we can show that

Eτ,ξ1,...,ξK−1

[
||∇f(xτ )||2

]
≤ 2 (f(x0) − flow) + AL

∑K
i=0 α2

i∑K
i=0 αi

K∑
t=0

Eξ1,...,ξK−1

[
||∇f(xt)||2

] αt∑K
i=0 αi

≤ 2 (f(x0) − flow) + AL
∑K

i=0 α2
i∑K

i=0 αi

,

(12)

where αt∑K

i=0 αi

stands for the probability mass function (pmf). Here, for α ∼ 1√
K

,
∑K

i=0 α2
i

goes to infinity slower than
∑K

i=0 αi.
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3 µ-Strongly Convex Functions
Definition 6. (Convex function). Let C ⊂ Rn be a convex set. The function f : C → R is
convex if for all x, y ∈ C, α ∈ [0, 1], it follows that

αf(x) + (1 − α)f(y) ≥ f(αx + (1 − α)y). (13)

One of the simplest convex functions is f : Rn → R, f(x) = 1
2 ||x||2.

Definition 7. (µ-strongly convex function). Let C ⊂ Rn be a convex set. The function
f : C → R is µ-strongly convex if for all x, y ∈ C, α ∈ [0, 1], it follows that

αf(x) + (1 − α)f(y) ≥ f(αx + (1 − α)y) + µ

2 α(1 − α)||y − x||2. (14)

Algorithms usually converge faster with these functions. The equivalent form of Definition
7 for µ-strongly convex function is given as

α

(
f(x) − µ

2 ||x||2
)

+(1−α)
(

f(y) − µ

2 ||y||2
)

≥ f(αx+(1−α)y)− µ

2 ||αx+(1−α)y||2. (15)

The other definition is that f is µ-strongly convex function if and only if F (x) = f(x)− µ
2 ||x||2

is convex.
If f is differentiable and µ-strongly convex, then we can apply the inequality for convexity

as follows
F (y) ≥ F (x) + ⟨∇F (x), y − x⟩

f(y) − µ

2 ||y||2 ≥ f(x) − µ

2 ||x||2 + ⟨∇f(x) − µx, y − x⟩.
(16)

We can write Eq. 16 in more compact form as follows

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + µ

2 ||y − x||2. (17)

If f is two times differentiable, then the following holds

f is two times differentiable, µ-strongly convex ⇐⇒ ∇2f(x) ≥ µI, (18)

where I is an identity matrix.

4 Gradient Descent for µ-Strongly Convex Functions
We assume that f is L-smooth and µ-strongly convex function. For our analyses, we will
apply gradient descent method as follows

xk+1 = xk − α∇f(xk). (19)

Bu using Definition 5 and replacing y, x by xk+1, xk, we can write

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩ + L

2 ||xk+1 − xk||2

= f(xk) − α⟨∇f(xk), ∇f(xk)⟩ + L

2 || − α∇f(xk)||2

= f(xk) − α||∇f(xk)||2 + α2L

2 ||f(xk)||2

= f(xk) − α

(
1 − αL

2

)
||f(xk)||2.

(20)

3



Let α = 1/L, then we can write Eq. 20 as follows

f(xk+1) ≤ f(xk) − 1
2L

||f(xk)||2. (21)

By using Eq. 17, one can prove that

1
2µ

||∇f(x)||2 ≥ f(x) − f∗ ∀x. (22)

Here, f is µ-strongly convex, so it has a unique minimum f∗. By substituting Eq. 22 into Eq.
21, we can write the following inequality

f(xk+1) ≤ f(xk) − µ

L
(f(xk) − f∗)

f(xk+1) − f∗ ≤
(

1 − µ

L

)
(f(xk) − f∗)

f(xk+1) − f∗ ≤
(

1 − µ

L

)2
(f(xk−1) − f∗)

...

f(xk+1) − f∗ ≤
(

1 − µ

L

)k+1
(f(x0) − f∗),

(23)

where µ
L is called the condition number. If it has a small value, it is difficult to optimize.
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