Lecture 8 - 09 March, 2022
Lecturer: Yura Malitsky

Scribe: Ahmet Kaplan

1 Last Lecture: Stochastic Subgradient Method

During the last lecture, we introduced the stochastic subgradient method for the following problem

$$
\begin{equation*}
\underset{\mathbf{x}}{\operatorname{minimize}} \quad f(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} f_{i}(\mathbf{x}) . \tag{1}
\end{equation*}
$$

We analyzed the convergence by assuming the subgradient of $f_{i_{k}}$ at $x_{k}, \mathbf{g}_{k} \in \partial f_{i_{k}}\left(\mathbf{x}_{k}\right)$, satisfies $E\left[\left\|\mathbf{g}_{k}\right\|\right] \leq G$. Now, we provide the convergence analysis of the stochastic gradient method when the $f(\cdot)$ is L-smooth.

2 Stochastic Gradient with Lipschitz Smoothness

Assumption 1. We assume that $f(\cdot)$ is L-smooth.
We cannot guarantee our previous assumption: $E\left[\left\|\mathbf{g}_{k}\right\|\right] \leq G$ due to the Assumption 1. Our new assumption is given as

Assumption 2. We assume that $E\left[\left\|\Delta f_{\xi}(\mathbf{x})\right\|^{2}\right] \leq A+B\|\Delta f(\mathbf{x})\|^{2}$. We can rewrite our assumption as follows

$$
\begin{equation*}
\frac{1}{n}\left\|\nabla f_{1}(\mathbf{x})\right\|^{2}+\ldots+\frac{1}{n}\left\|\nabla f_{n}(\mathbf{x})\right\|^{2} \leq A+\frac{B}{n^{2}}\left\|\nabla f_{1}(\mathbf{x})+\ldots+\nabla f_{n}(\mathbf{x})\right\|^{2} . \tag{2}
\end{equation*}
$$

Here, when $B=0$, we return to our previous assumption.
Assumption 3. We assume that $1-\frac{\alpha_{k} L B}{2} \geq \frac{1}{2} \Longleftrightarrow \alpha_{k} \leq \frac{1}{L B}$.
Assumption 4. We assume that $f(\mathbf{x})$ is lower bounded as $f(\mathbf{x}) \geq f_{\text {low }}$.
In addition, there is no information about the convexity of $f(\cdot)$. For the stochastic gradient method, we apply Algorithm 1.

```
Algorithm 1 Stochastic Gradient Method
Require: \(\mathrm{x}_{0}\)
Ensure: \(\mathbf{x}_{\tau}\)
    for \(k=0, \cdots, K-1\) do
        Sample \(\xi_{k} \in\{1,2, \ldots, n\}\) uniformly
        Calculate \(\mathbf{x}_{k+1}:=\mathbf{x}_{k}-\alpha_{k} \nabla f_{\xi_{k}}\left(\mathbf{x}_{k}\right)\)
    end for
    Sample \(\tau\) from p.m.f. \(P\{\tau=t\}=\frac{\alpha_{t}}{\sum_{i=0}^{K} \alpha_{i}}\)
    Return \(\mathbf{x}_{\tau}\)
\(\triangleright\) We have a concrete point.
```


2.1 Convergence Analysis

Definition 5. (Descent Lemma)

$$
\begin{equation*}
f(\mathbf{y}) \leq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{L}{2}\|\mathbf{y}-\mathbf{x}\|^{2} \tag{3}
\end{equation*}
$$

We use descent lemma in our calculations. Let \mathbf{y}, \mathbf{x} replaced by $\mathbf{x}_{k+1}, \mathbf{x}_{k}$. Then, we can write the following inequality

$$
\begin{align*}
f\left(\mathbf{x}_{k+1}\right) & \leq f\left(\mathbf{x}_{k}\right)+\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}_{k+1}-\mathbf{x}_{k}\right\rangle+\frac{L}{2}\left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|^{2} \\
& =f\left(\mathbf{x}_{k}\right)-\alpha_{k}\left\langle\nabla f\left(\mathbf{x}_{k}\right), \nabla f_{\xi_{k}}\left(\mathbf{x}_{k}\right)\right\rangle+\frac{\alpha_{k}^{2} L}{2}\left\|\nabla f_{\xi_{k}}\left(\mathbf{x}_{k}\right)\right\|^{2}, \tag{4}
\end{align*}
$$

where we use the equation, $\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k} \nabla f_{\xi_{k}}\left(\mathbf{x}_{k}\right)$, to transform RHS as in the second line. We calculate the conditional expectation of $\nabla f_{\xi_{k}}\left(\mathbf{x}_{k}\right)$ as follows

$$
\begin{equation*}
E_{k}\left[\nabla f_{\xi_{k}}\left(\mathbf{x}_{k}\right)\right]=\frac{1}{n} \nabla f_{1}\left(\mathbf{x}_{k}\right)+\ldots+\frac{1}{n} \nabla f_{n}\left(\mathbf{x}_{k}\right)=\nabla f\left(\mathbf{x}_{k}\right) . \tag{5}
\end{equation*}
$$

Now, we take the conditional expectation of Eq. 4. w.r.t. k as follows

$$
\begin{equation*}
E_{k}\left[f\left(\mathbf{x}_{k+1}\right)-f\left(\mathbf{x}_{k}\right)\right] \leq-\alpha_{k}\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2}+\frac{\alpha_{k}^{2} L}{2} E_{k}\left[\left\|\nabla f_{\xi_{k}}\left(\mathbf{x}_{k}\right)\right\|^{2}\right] . \tag{6}
\end{equation*}
$$

By using Assumption 2, Eq. 6 can be written as

$$
\begin{array}{r}
E_{k}\left[f\left(\mathbf{x}_{k+1}\right)-f\left(\mathbf{x}_{k}\right)\right] \leq-\alpha_{k}\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2}+\frac{\alpha_{k}^{2} L}{2}\left(A+B\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2}\right) \\
\alpha_{k}\left(1-\frac{\alpha_{k} L B}{2}\right)\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2} \leq E_{k}\left[f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}_{k+1}\right)\right]+\frac{\alpha_{k}^{2} L A}{2} \tag{7}
\end{array}
$$

By using Assumption 3, Eq. 7 can be written as

$$
\begin{equation*}
\frac{\alpha_{k}}{2}\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2} \leq E_{k}\left[f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}_{k+1}\right)\right]+\frac{\alpha_{k}^{2} A L}{2} \tag{8}
\end{equation*}
$$

In Eq. 8, when we calculate the following expectation $E_{k}\left[f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}_{k+1}\right)\right]$ w.r.t. k, the term $f\left(\mathbf{x}_{k+1}\right)$ does not disappear due to $k+1$. That is why we take expectation of Eq. 8 by assuming x_{k} is also random as follows

$$
\begin{equation*}
\frac{\alpha_{k}}{2} E_{\xi_{1}, \ldots, \xi_{K-1}}\left[\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2}\right] \leq E_{\xi_{1}, \ldots, \xi_{K-1}}\left[f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}_{k+1}\right)\right]+\frac{\alpha_{k}^{2} A L}{2} \tag{9}
\end{equation*}
$$

Now, similar to the previous lectures it is possible to sum up as follows

$$
\begin{equation*}
\sum_{i=0}^{K} \alpha_{i} E_{\xi_{1}, \ldots, \xi_{K-1}}\left[\left\|\nabla f\left(\mathbf{x}_{i}\right)\right\|^{2}\right] \leq 2 E_{\xi_{1}, \ldots, \xi_{K-1}}\left[f\left(\mathbf{x}_{0}\right)-f\left(\mathbf{x}_{K+1}\right)\right]+A L \sum_{i=0}^{K} \alpha_{i}^{2} \tag{10}
\end{equation*}
$$

By using Assumption 4, Eq. 10 can be written as

$$
\begin{equation*}
\sum_{i=0}^{K} \alpha_{i} E_{\xi_{1}, \ldots, \xi_{K-1}}\left[\left\|\nabla f\left(\mathbf{x}_{i}\right)\right\|^{2}\right] \leq 2\left(f\left(\mathbf{x}_{0}\right)-f_{\text {low }}\right)+A L \sum_{i=0}^{K} \alpha_{i}^{2} \tag{11}
\end{equation*}
$$

By using Eq. 11, we can show that

$$
\begin{align*}
E_{\tau, \xi_{1}, \ldots, \xi_{K-1}}\left[\left\|\nabla f\left(\mathbf{x}_{\tau}\right)\right\|^{2}\right] & \leq \frac{2\left(f\left(\mathbf{x}_{0}\right)-f_{\text {low }}\right)+A L \sum_{i=0}^{K} \alpha_{i}^{2}}{\sum_{i=0}^{K} \alpha_{i}} \\
\sum_{t=0}^{K} E_{\xi_{1}, \ldots, \xi_{K-1}}\left[\left\|\nabla f\left(\mathbf{x}_{t}\right)\right\|^{2}\right] \frac{\alpha_{t}}{\sum_{i=0}^{K} \alpha_{i}} & \leq \frac{2\left(f\left(\mathbf{x}_{0}\right)-f_{\text {low }}\right)+A L \sum_{i=0}^{K} \alpha_{i}^{2}}{\sum_{i=0}^{K} \alpha_{i}}, \tag{12}
\end{align*}
$$

where $\frac{\alpha_{t}}{\sum_{i=0}^{K} \alpha_{i}}$ stands for the probability mass function (pmf). Here, for $\alpha \sim \frac{1}{\sqrt{K}}, \sum_{i=0}^{K} \alpha_{i}^{2}$ goes to infinity slower than $\sum_{i=0}^{K} \alpha_{i}$.

3μ-Strongly Convex Functions

Definition 6. (Convex function). Let $C \subset \mathbb{R}^{n}$ be a convex set. The function $f: C \rightarrow \mathbb{R}$ is convex if for all $x, y \in C, \alpha \in[0,1]$, it follows that

$$
\begin{equation*}
\alpha f(\mathbf{x})+(1-\alpha) f(\mathbf{y}) \geq f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y}) . \tag{13}
\end{equation*}
$$

One of the simplest convex functions is $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(\mathbf{x})=\frac{1}{2}\|\mathbf{x}\|^{2}$.
Definition 7. (μ-strongly convex function). Let $C \subset \mathbb{R}^{n}$ be a convex set. The function $f: C \rightarrow \mathbb{R}$ is μ-strongly convex if for all $x, y \in C, \alpha \in[0,1]$, it follows that

$$
\begin{equation*}
\alpha f(\mathbf{x})+(1-\alpha) f(\mathbf{y}) \geq f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y})+\frac{\mu}{2} \alpha(1-\alpha)\|\mathbf{y}-\mathbf{x}\|^{2} . \tag{14}
\end{equation*}
$$

Algorithms usually converge faster with these functions. The equivalent form of Definition 7 for μ-strongly convex function is given as

$$
\begin{equation*}
\alpha\left(f(\mathbf{x})-\frac{\mu}{2}\|x\|^{2}\right)+(1-\alpha)\left(f(\mathbf{y})-\frac{\mu}{2}\|y\|^{2}\right) \geq f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y})-\frac{\mu}{2}\|\alpha \mathbf{x}+(1-\alpha) \mathbf{y}\|^{2} . \tag{15}
\end{equation*}
$$

The other definition is that f is μ-strongly convex function if and only if $F(\mathbf{x})=f(\mathbf{x})-\frac{\mu}{2}\|\mathbf{x}\|^{2}$ is convex.

If f is differentiable and μ-strongly convex, then we can apply the inequality for convexity as follows

$$
\begin{align*}
F(\mathbf{y}) & \geq F(\mathbf{x})+\langle\nabla F(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle \\
f(\mathbf{y})-\frac{\mu}{2}\|\mathbf{y}\|^{2} & \geq f(\mathbf{x})-\frac{\mu}{2}\|x\|^{2}+\langle\nabla f(\mathbf{x})-\mu \mathbf{x}, \mathbf{y}-\mathbf{x}\rangle . \tag{16}
\end{align*}
$$

We can write Eq. 16 in more compact form as follows

$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{\mu}{2}\|\mathbf{y}-\mathbf{x}\|^{2} . \tag{17}
\end{equation*}
$$

If f is two times differentiable, then the following holds

$$
\begin{equation*}
f \text { is two times differentiable, } \mu \text {-strongly convex } \Longleftrightarrow \nabla^{2} f(\mathbf{x}) \geq \mu \mathbf{I} \text {, } \tag{18}
\end{equation*}
$$

where \mathbf{I} is an identity matrix.

4 Gradient Descent for μ-Strongly Convex Functions

We assume that f is L-smooth and μ-strongly convex function. For our analyses, we will apply gradient descent method as follows

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha \nabla f\left(\mathbf{x}_{k}\right) \tag{19}
\end{equation*}
$$

Bu using Definition 5 and replacing \mathbf{y}, \mathbf{x} by $\mathbf{x}_{k+1}, \mathbf{x}_{k}$, we can write

$$
\begin{align*}
f\left(\mathbf{x}_{k+1}\right) & \leq f\left(\mathbf{x}_{k}\right)+\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}_{k+1}-\mathbf{x}_{k}\right\rangle+\frac{L}{2}\left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|^{2} \\
& =f\left(\mathbf{x}_{k}\right)-\alpha\left\langle\nabla f\left(\mathbf{x}_{k}\right), \nabla f\left(\mathbf{x}_{k}\right)\right\rangle+\frac{L}{2}\left\|-\alpha \nabla f\left(\mathbf{x}_{k}\right)\right\|^{2} \\
& =f\left(\mathbf{x}_{k}\right)-\alpha\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2}+\frac{\alpha^{2} L}{2}\left\|f\left(\mathbf{x}_{k}\right)\right\|^{2} \tag{20}\\
& =f\left(\mathbf{x}_{k}\right)-\alpha\left(1-\frac{\alpha L}{2}\right)\left\|f\left(\mathbf{x}_{k}\right)\right\|^{2} .
\end{align*}
$$

Let $\alpha=1 / L$, then we can write Eq. 20 as follows

$$
\begin{equation*}
f\left(\mathbf{x}_{k+1}\right) \leq f\left(\mathbf{x}_{k}\right)-\frac{1}{2 L}\left\|f\left(\mathbf{x}_{k}\right)\right\|^{2} . \tag{21}
\end{equation*}
$$

By using Eq. 17, one can prove that

$$
\begin{equation*}
\frac{1}{2 \mu}\|\nabla f(\mathbf{x})\|^{2} \geq f(\mathbf{x})-f_{*} \quad \forall \mathbf{x} \tag{22}
\end{equation*}
$$

Here, f is μ-strongly convex, so it has a unique minimum f_{*}. By substituting Eq. 22 into Eq. 21 , we can write the following inequality

$$
\begin{align*}
f\left(\mathbf{x}_{k+1}\right) & \leq f\left(\mathbf{x}_{k}\right)-\frac{\mu}{L}\left(f\left(\mathbf{x}_{k}\right)-f_{*}\right) \\
f\left(\mathbf{x}_{k+1}\right)-f_{*} & \leq\left(1-\frac{\mu}{L}\right)\left(f\left(\mathbf{x}_{k}\right)-f_{*}\right) \\
f\left(\mathbf{x}_{k+1}\right)-f_{*} & \leq\left(1-\frac{\mu}{L}\right)^{2}\left(f\left(\mathbf{x}_{k-1}\right)-f_{*}\right) \tag{23}\\
& \vdots \\
f\left(\mathbf{x}_{k+1}\right)-f_{*} & \leq\left(1-\frac{\mu}{L}\right)^{k+1}\left(f\left(\mathbf{x}_{0}\right)-f_{*}\right),
\end{align*}
$$

where $\frac{\mu}{L}$ is called the condition number. If it has a small value, it is difficult to optimize.

