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1. (i) Let Ω be a set, and let {Fi; i ∈ Γ} be σ-algebras of subsets of Ω,
where Γ is an arbitrary (possibly uncountable) index set. Prove,
by checking all the conditions in the definition, that ∩i∈ΓFi is a
σ-algebra.

(ii) Let Ω be a set, and let C be a collection of subsets in Ω. Prove
that there exists a σ-algebra F such that C ⊂ F , and such that
F ⊂ G for any other σ-algebra G such that C ⊂ G. [The σ-algebra
F is called the σ-algebra generated by C, and is denoted by σ(C).]

2. Let S be the semiring of bounded half-open intervals S = {(a, b] ⊂
R;−∞ < a ≤ b < ∞}. Prove that the σ-algebra generated by S is the
same as the σ-algebra generated by the collection of bounded open
intervals C = {(a, b) ⊂ R;−∞ < a ≤ b < ∞}, and also the same as the
σ-algebra generated by the collection of open sets in R. (Please recall
that the collection of open sets in R is not identical to C.)

3. Let Ω = (0, 1], let S0 = {(a, b] ⊂ R; 0 ≤ a ≤ b ≤ 1}, and let A0 be
the collection of finite disjoint unions of sets in S0. That is: A ∈ A0 if
and only if A = ∪n

i=1Bi, where n ∈ N, and {Bi ∈ S0; i = 1, . . . , n} are
disjoint sets.

(i) Prove that S0 is a semiring, and that A0 is an algebra but not a
σ-algebra.

(ii) Define the set function µ : A0 → R+ as follows: µ(A) = 1 if there
exists an εA > 0 (depending on A) such that (1

2
, 1
2
+εA] ⊂ A, and

µ(A) = 0 otherwise. Prove that µ is finitely, but not countably,
additive.

4. Let X : Ω → R be a real valued random variable defined on a probabi-
lity space (Ω,F ,P), and let G ⊂ F be a σ-algebra. Recall the definition
of σ(X) (the σ-algebra generated by X).
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(i) Prove that X is G/R-measurable if and only if σ(X) ⊂ G.
(ii) Prove that if G = {∅,Ω}, then X is G/R-measurable if and only

if X is constant.

(iii) Assume that P(A) ∈ {0, 1} for all A ∈ G. Prove that if X is
G/R-measurable, then P(X = c) = 1 for some constant c ∈ R.

5. Let X and Y be real valued random variables defined on a probability
space (Ω,F ,P). Prove that Y is σ(X)-measurable if and only if there
exists a R/R-measurable function f : R → R such that Y = f ◦
X. Hint: For the “only if” part, prove the claim first for Y a simple
function, then for Y nonnegative, then for a general Y .

6. Let (Ω,F , µ) be a measure space, and let f : Ω → R+ be integrable.
Define the set function ν : F → R+ by

ν(A) =

∫

A

fdµ =

∫

IAfdµ ∀A ∈ F .

(i) Prove that ν is a measure.

(ii) Prove that for each ε > 0 there exists a δ > 0 such that if
µ(A) < δ, then ν(A) < ε.

7. Let (Ω,F , µ) be a measure space, and let {fn : Ω → R;n = 1, 2, . . .} be
integrable functions such that fn ↑ f , meaning (as usual) that {fn;n =
1, 2, . . .} is a non-decreasing sequence which converges pointwise to a
function f : Ω → R. Prove that if supn≥1

∫

fndµ < ∞, then f is
integrable and

∫

fndµ →
∫

fdµ as n → ∞. (Please note that we are
not assuming {fn;n = 1, 2, . . .} to be nonnegative.)

8. A function f : (a, b] → R on a bounded interval (a, b] ⊂ R is said
to be Riemann integrable, with Riemann integral r, if the following
condition holds: for each ε > 0, there exists a δ > 0 such that

∣

∣r −
n
∑

i=1

f(xi)ν(Ii)
∣

∣ < ε,

for any finite partitioning of (a, b] into disjoint subintervals {Ii; i =
1, . . . , n} satisfying maxi=1,...,n ν(Ii) < δ, and any set of real numbers
{xi ∈ Ii; i = 1, . . . , n}. (Here, ν is the Lebesgue measure.)

Assume that f is Borel measurable and bounded. Prove that if f is
Riemann integrable, the Riemann integral coincides with the Lebesgue
integral.
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9. Let {Xi; i = 1, 2, 3} be independent random variables such that P(Xi =
1) = P(Xi = −1) = 0.5, i = 1, 2, 3. Let X4 = X1X2X3. Prove that any
three of the four random variables {X1, X2, X3, X4} are independent,
but that the four random variables {X1, X2, X3, X4} are not indepen-
dent.

10. Let X be a real valued random variable with cumulative distribution
function FX : R → [0, 1]. Recall that FX(x) = P(X ≤ x) for each
x ∈ R.

(i) Let c ∈ R. Prove that (the Lebesgue integral)
∫∞
−∞(FX(x+ c)−

FX(x))dx = c.

(ii) Assume that FX is a continuous function. Prove that E(FX(X)) =
0.5.

11. Let {Xt; t = 1, 2, . . .} be a countably infinite sequence of random va-
riables, defined on a common probability space (Ω,F ,P). Prove that
{Xt; t = 1, 2, . . .} are independent if and only if the n-dimensional
random variable (X1, . . . , Xn)

T is independent of Xn+1 for each n =
1, 2, . . . (meaning that σ(X1, . . . , Xn) is independent of σ(Xn+1) for
each n = 1, 2, . . .).

12. Let (Ω,F ,P) be a probability space, and let the events Ai ∈ F , i =
1, 2, . . ., be independent. Let Sn =

∑n
i=1

IAi
for each n = 1, 2, . . ..

Prove that Sn

n
− 1

n

∑n
i=1

P (Ai) converges to 0 in probability as n → ∞.

13. Let {Xt; t = 1, 2, . . .} be i.i.d. random variables, such that

P (X1 = (−1)kk) =

{

a
k2 ln k

for k = 2, 3, . . .,

0 otherwise,

where a =
(
∑∞

k=2
1

k2 ln k

)−1
. Let Sn =

∑n
i=1

Xi for each n = 1, 2, . . ..

(i) Show that E(|X1|) = ∞.

(ii) Show that there is a finite constant γ such that Sn

n

p−→ γ.

14. Let {Xt; t = 1, 2, . . .} be independent random variables, such that

Xn
p−→ 0. Does it follow that 1

n

∑n
i=1

Xi
p−→ 0? Prove, or disprove by

means of a counterexample.

15. Let {Xn;n = 1, 2, . . .} be iid random variables, such that P (X1 =
2k) = 2−k for each k = 1, 2, . . .. Prove that P (lim supn→∞

Xn

n lnn
=

∞) = 1.
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16. Let {Xi; i = 1, 2, . . .} be independent (not necessarily identically distri-
buted) random variables, and let Sn =

∑n
i=1

Xi for each n = 1, 2, . . ..
Prove that if E(Xi) = 0 for each i = 1, 2, . . ., and E(X4

i ) ≤ C for each
i = 1, 2, . . ., where C ∈ (0,∞) is a constant, then Sn

n
converges to 0

almost surely as n → ∞.

17. Let {Xi; i = 1, 2, . . .} be independent (not necessarily identically dis-
tributed) random variables. Define the random power series B by
B(s) =

∑∞
k=0

Xks
k.

(i) Prove that the convergence radius of B is, with probability 1,
equal to a deterministic constant r ∈ [0,∞].

(ii) Assume that {Xi; i = 1, 2, . . .} are iid random variables such
that P(X1 6= 0) > 0. Prove that the constant r is either 1 or
0, depending on whether the expectation E(ln+ |X1|) is finite or
infinite. (Here, ln+ x = ln(max(x, 1)).)

18. Let {Xn;n = 1, 2, . . .} and {Yn;n = 1, 2, . . .} be random variables.
Assume that Xn → X in distribution as n → ∞, where X is a random
variable, and that Yn → a in distribution as n → ∞, where a ∈ R is a
constant. Prove that Xn + Yn → X + a in distribution as n → ∞.

19. Let {µn;n = 1, 2, . . .} be probability measures on (R,R). Let f : R →
[0,∞) be a nonnegative measurable function such that f(x) → ∞ as
x → ±∞. Prove that if

sup
n≥1

∫

f(x)dµn(x) < ∞,

then {µn;n = 1, 2, . . .} is tight, meaning that for each ε > 0, we can
find an 0 < M < ∞ such that

sup
n≥1

µn([−M,M ]c) < ε.

20. Let {Xn;n = 1, 2, . . .} and X be random variables, such that Xn
d−→ X

as n → ∞. It is well known that the family of probability distributions
{µXn

;n = 1, 2, . . .} is tight, meaning that for each ε > 0, we can find
an 0 < M < ∞ such that

sup
n≥1

µXn
([−M,M ]c) < ε.
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(i) Prove that the family of characteristic functions {ϕXn
;n = 1, 2, . . .}

is equicontinuous, meaning that for each ε > 0, we can find a
δ > 0 such that

sup
n≥1

∣

∣ϕXn
(t+ h)− ϕXn

(t)
∣

∣ < ε ∀|h| < δ, t ∈ R.

(ii) Let −∞ < a < b < ∞. Prove that

sup
a≤t≤b

∣

∣ϕXn
(t)− ϕX(t)

∣

∣ → 0, as n → ∞.

21. Let {Xn;n = 1, 2, . . .} and {Yn;n = 1, 2, . . .} be random variables,
such that Xn and Yn are independent for each n = 1, 2, . . .. Show that

if Xn
d−→ X and Yn

d−→ Y as n → ∞, then Xn+Yn
d−→ X+Y as n → ∞.

22. Give an example of a sequence of random variables {Xn;n = 1, 2, . . .}
which converges in distribution to a standard normal random variable
as n → ∞, but which also has the property that that E(|Xn|k) = ∞
for each positive integer k = 1, 2, . . ..

23. Let {Xn;n = 1, 2, . . .} be independent random variables such that
E(Xn) = 0 for each n = 1, 2, . . ., E(X2

n) = 1 for each n = 1, 2, . . ., and
E(|Xn|2+ε) ≤ M for each n = 1, 2, . . ., where ε > 0 and 0 < M < ∞.
Show that 1√

n

∑n
i=1

Xi converges in distribution to a standard normal

random variable as n → ∞.

24. Let {Xn;n = 1, 2, . . .} be independent random variables such that
P (|Xn| ≤ C) = 1 for each n = 1, 2, . . ., where 0 < C < ∞, and σ2

n =
V (

∑n
i=1

Xi) → ∞ as n → ∞. Show that 1√
σ2
n

(
∑n

i=1
Xi−E(

∑n
i=1

Xi))

converges in distribution to a standard normal random variable as
n → ∞.

25. Let the random variable X have a stable distribution with characte-
ristic function

ϕX(t) = e−b|t|α ∀t ∈ R,

where 0 < α < 2 and b > 0. Prove that E(|X|p) < ∞ for p < α. Hint:
Make use of the inequality

P (|X| > 2

a
) ≤ 1

a

∫ a

−a

(1− ϕX(t))dt ∀a > 0.
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26. Let the random variable X have an infinitely divisible distribution
with characteristic function ϕX . Prove that

ϕX(t) 6= 0 ∀t ∈ R.

27. Let X be a random variable, with probability distribution µX and
characteristic function ϕX . Let Y = (Y1, . . . , Yd)

T be a d-dimensional
(that is, Rd-valued) random variable with characteristic function

ϕY (t1, . . . , td) = ϕX(t1 + · · ·+ td) ∀(t1, . . . , td) ∈ R
d.

What is the probability distribution of Y ?

28. Let µ and ν be σ-finite measures on a measurable space (Ω,F). Prove
that the Lebesgue decomposition of ν with respect to µ is unique.

29. Let (X,Y ) be a 2-dimensional (that is, R2-valued) random variable de-
fined on a probability space (Ω,F , P ). Consider the probability space
(R2,R2, µ), where µ is the probability distribution of (X,Y ). Assu-
me that µ has a density f with respect to the Lebesgue measure on
(R2,R2). Define G as the σ-algebra {A× R;A ∈ R} ⊂ R2.

(i) Prove that a version of the conditional probability µ(R × B|G),
where B ∈ R, is given by

µ(R×B|G) =
∫

B
f(x, u)du

∫

R
f(x, u)du

∀(x, y) ∈ R
2.

(ii) Prove that a version of the conditional probability P (Y ∈ B|σ(X)),
where B ∈ R, is given by

P (Y ∈ B|σ(X)) =

∫

B
f(X(ω), u)du

∫

R
f(X(ω), u)du

∀ω ∈ Ω.

30. Let X be an integrable random variable defined on a probability space
(Ω,F , P ). Let Y = E(X|G), where G ⊂ F . Prove that if E(Y 2) =
E(X2) < ∞, then P (X = Y ) = 1.
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