MAI0074: HOME ASSIGNMENT PROBLEMS

Torkel Erhardsson,MAI

12 december 2019

1. (i) Let Ω be a set, and let $\left\{\mathcal{F}_{i} ; i \in \Gamma\right\}$ be σ-algebras of subsets of Ω, where Γ is an arbitrary (possibly uncountable) index set. Prove, by checking all the conditions in the definition, that $\cap_{i \in \Gamma} \mathcal{F}_{i}$ is a σ-algebra.
(ii) Let Ω be a set, and let \mathcal{C} be a collection of subsets in Ω. Prove that there exists a σ-algebra \mathcal{F} such that $\mathcal{C} \subset \mathcal{F}$, and such that $\mathcal{F} \subset \mathcal{G}$ for any other σ-algebra \mathcal{G} such that $\mathcal{C} \subset \mathcal{G}$. [The σ-algebra \mathcal{F} is called the σ-algebra generated by \mathcal{C}, and is denoted by $\sigma(\mathcal{C})$.]
2. Let \mathcal{S} be the semiring of bounded half-open intervals $\mathcal{S}=\{(a, b] \subset$ $\mathbb{R} ;-\infty<a \leq b<\infty\}$. Prove that the σ-algebra generated by \mathcal{S} is the same as the σ-algebra generated by the collection of bounded open intervals $\mathcal{C}=\{(a, b) \subset \mathbb{R} ;-\infty<a \leq b<\infty\}$, and also the same as the σ-algebra generated by the collection of open sets in \mathbb{R}. (Please recall that the collection of open sets in \mathbb{R} is not identical to \mathcal{C}.)
3. Let $\Omega=(0,1]$, let $\mathcal{S}_{0}=\{(a, b] \subset \mathbb{R} ; 0 \leq a \leq b \leq 1\}$, and let \mathcal{A}_{0} be the collection of finite disjoint unions of sets in \mathcal{S}_{0}. That is: $A \in \mathcal{A}_{0}$ if and only if $A=\cup_{i=1}^{n} B_{i}$, where $n \in \mathbb{N}$, and $\left\{B_{i} \in \mathcal{S}_{0} ; i=1, \ldots, n\right\}$ are disjoint sets.
(i) Prove that \mathcal{S}_{0} is a semiring, and that \mathcal{A}_{0} is an algebra but not a σ-algebra.
(ii) Define the set function $\mu: \mathcal{A}_{0} \rightarrow \mathbb{R}_{+}$as follows: $\mu(A)=1$ if there exists an $\varepsilon_{A}>0$ (depending on A) such that $\left(\frac{1}{2}, \frac{1}{2}+\varepsilon_{A}\right] \subset A$, and $\mu(A)=0$ otherwise. Prove that μ is finitely, but not countably, additive.
4. Let $X: \Omega \rightarrow \mathbb{R}$ be a real valued random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{G} \subset \mathcal{F}$ be a σ-algebra. Recall the definition of $\sigma(X)$ (the σ-algebra generated by X).
(i) Prove that X is $\mathcal{G} / \mathcal{R}$-measurable if and only if $\sigma(X) \subset \mathcal{G}$.
(ii) Prove that if $\mathcal{G}=\{\emptyset, \Omega\}$, then X is $\mathcal{G} / \mathcal{R}$-measurable if and only if X is constant.
(iii) Assume that $\mathbb{P}(A) \in\{0,1\}$ for all $A \in \mathcal{G}$. Prove that if X is $\mathcal{G} / \mathcal{R}$-measurable, then $\mathbb{P}(X=c)=1$ for some constant $c \in \mathbb{R}$.
5. Let X and Y be real valued random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Prove that Y is $\sigma(X)$-measurable if and only if there exists a $\mathcal{R} / \mathcal{R}$-measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $Y=f \circ$ X. Hint: For the "only if" part, prove the claim first for Y a simple function, then for Y nonnegative, then for a general Y.
6. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and let $f: \Omega \rightarrow \mathbb{R}_{+}$be integrable. Define the set function $\nu: \mathcal{F} \rightarrow \mathbb{R}_{+}$by

$$
\nu(A)=\int_{A} f d \mu=\int I_{A} f d \mu \quad \forall A \in \mathcal{F}
$$

(i) Prove that ν is a measure.
(ii) Prove that for each $\varepsilon>0$ there exists a $\delta>0$ such that if $\mu(A)<\delta$, then $\nu(A)<\varepsilon$.
7. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and let $\left\{f_{n}: \Omega \rightarrow \mathbb{R} ; n=1,2, \ldots\right\}$ be integrable functions such that $f_{n} \uparrow f$, meaning (as usual) that $\left\{f_{n} ; n=\right.$ $1,2, \ldots\}$ is a non-decreasing sequence which converges pointwise to a function $f: \Omega \rightarrow \mathbb{R}$. Prove that if $\sup _{n \geq 1} \int f_{n} d \mu<\infty$, then f is integrable and $\int f_{n} d \mu \rightarrow \int f d \mu$ as $n \rightarrow \infty$. (Please note that we are not assuming $\left\{f_{n} ; n=1,2, \ldots\right\}$ to be nonnegative.)
8. A function $f:(a, b] \rightarrow \mathbb{R}$ on a bounded interval $(a, b] \subset \mathbb{R}$ is said to be Riemann integrable, with Riemann integral r, if the following condition holds: for each $\varepsilon>0$, there exists a $\delta>0$ such that

$$
\left|r-\sum_{i=1}^{n} f\left(x_{i}\right) \nu\left(I_{i}\right)\right|<\varepsilon
$$

for any finite partitioning of $(a, b]$ into disjoint subintervals $\left\{I_{i} ; i=\right.$ $1, \ldots, n\}$ satisfying $\max _{i=1, \ldots, n} \nu\left(I_{i}\right)<\delta$, and any set of real numbers $\left\{x_{i} \in I_{i} ; i=1, \ldots, n\right\}$. (Here, ν is the Lebesgue measure.)
Assume that f is Borel measurable and bounded. Prove that if f is Riemann integrable, the Riemann integral coincides with the Lebesgue integral.
9. Let $\left\{X_{i} ; i=1,2,3\right\}$ be independent random variables such that $\mathbb{P}\left(X_{i}=\right.$ $1)=\mathbb{P}\left(X_{i}=-1\right)=0.5, i=1,2,3$. Let $X_{4}=X_{1} X_{2} X_{3}$. Prove that any three of the four random variables $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ are independent, but that the four random variables $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ are not independent.
10. Let X be a real valued random variable with cumulative distribution function $F_{X}: \mathbb{R} \rightarrow[0,1]$. Recall that $F_{X}(x)=\mathbb{P}(X \leq x)$ for each $x \in \mathbb{R}$.
(i) Let $c \in \mathbb{R}$. Prove that (the Lebesgue integral) $\int_{-\infty}^{\infty}\left(F_{X}(x+c)-\right.$ $\left.F_{X}(x)\right) d x=c$.
(ii) Assume that F_{X} is a continuous function. Prove that $\mathbb{E}\left(F_{X}(X)\right)=$ 0.5 .
11. Let $\left\{X_{t} ; t=1,2, \ldots\right\}$ be a countably infinite sequence of random variables, defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Prove that $\left\{X_{t} ; t=1,2, \ldots\right\}$ are independent if and only if the n-dimensional random variable $\left(X_{1}, \ldots, X_{n}\right)^{T}$ is independent of X_{n+1} for each $n=$ $1,2, \ldots$ (meaning that $\sigma\left(X_{1}, \ldots, X_{n}\right)$ is independent of $\sigma\left(X_{n+1}\right)$ for each $n=1,2, \ldots)$.
12. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let the events $A_{i} \in \mathcal{F}, i=$ $1,2, \ldots$, be independent. Let $S_{n}=\sum_{i=1}^{n} I_{A_{i}}$ for each $n=1,2, \ldots$ Prove that $\frac{S_{n}}{n}-\frac{1}{n} \sum_{i=1}^{n} P\left(A_{i}\right)$ converges to 0 in probability as $n \rightarrow \infty$.
13. Let $\left\{X_{t} ; t=1,2, \ldots\right\}$ be i.i.d. random variables, such that

$$
P\left(X_{1}=(-1)^{k} k\right)= \begin{cases}\frac{a}{k^{2} \ln k} & \text { for } k=2,3, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

where $a=\left(\sum_{k=2}^{\infty} \frac{1}{k^{2} \ln k}\right)^{-1}$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$ for each $n=1,2, \ldots$.
(i) Show that $E\left(\left|X_{1}\right|\right)=\infty$.
(ii) Show that there is a finite constant γ such that $\frac{S_{n}}{n} \xrightarrow{p} \gamma$.
14. Let $\left\{X_{t} ; t=1,2, \ldots\right\}$ be independent random variables, such that $X_{n} \xrightarrow{p} 0$. Does it follow that $\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{p} 0$? Prove, or disprove by means of a counterexample.
15. Let $\left\{X_{n} ; n=1,2, \ldots\right\}$ be iid random variables, such that $P\left(X_{1}=\right.$ $\left.2^{k}\right)=2^{-k}$ for each $k=1,2, \ldots$ Prove that $P\left(\limsup _{n \rightarrow \infty} \frac{X_{n}}{n \ln n}=\right.$ $\infty)=1$.
16. Let $\left\{X_{i} ; i=1,2, \ldots\right\}$ be independent (not necessarily identically distributed) random variables, and let $S_{n}=\sum_{i=1}^{n} X_{i}$ for each $n=1,2, \ldots$. Prove that if $E\left(X_{i}\right)=0$ for each $i=1,2, \ldots$, and $E\left(X_{i}^{4}\right) \leq C$ for each $i=1,2, \ldots$, where $C \in(0, \infty)$ is a constant, then $\frac{S_{n}}{n}$ converges to 0 almost surely as $n \rightarrow \infty$.
17. Let $\left\{X_{i} ; i=1,2, \ldots\right\}$ be independent (not necessarily identically distributed) random variables. Define the random power series B by $B(s)=\sum_{k=0}^{\infty} X_{k} s^{k}$.
(i) Prove that the convergence radius of B is, with probability 1 , equal to a deterministic constant $r \in[0, \infty]$.
(ii) Assume that $\left\{X_{i} ; i=1,2, \ldots\right\}$ are iid random variables such that $\mathbb{P}\left(X_{1} \neq 0\right)>0$. Prove that the constant r is either 1 or 0 , depending on whether the expectation $\mathbb{E}\left(\ln ^{+}\left|X_{1}\right|\right)$ is finite or infinite. (Here, $\ln ^{+} x=\ln (\max (x, 1))$.)
18. Let $\left\{X_{n} ; n=1,2, \ldots\right\}$ and $\left\{Y_{n} ; n=1,2, \ldots\right\}$ be random variables. Assume that $X_{n} \rightarrow X$ in distribution as $n \rightarrow \infty$, where X is a random variable, and that $Y_{n} \rightarrow a$ in distribution as $n \rightarrow \infty$, where $a \in \mathbb{R}$ is a constant. Prove that $X_{n}+Y_{n} \rightarrow X+a$ in distribution as $n \rightarrow \infty$.
19. Let $\left\{\mu_{n} ; n=1,2, \ldots\right\}$ be probability measures on $(\mathbb{R}, \mathcal{R})$. Let $f: \mathbb{R} \rightarrow$ $[0, \infty)$ be a nonnegative measurable function such that $f(x) \rightarrow \infty$ as $x \rightarrow \pm \infty$. Prove that if

$$
\sup _{n \geq 1} \int f(x) d \mu_{n}(x)<\infty
$$

then $\left\{\mu_{n} ; n=1,2, \ldots\right\}$ is tight, meaning that for each $\varepsilon>0$, we can find an $0<M<\infty$ such that

$$
\sup _{n \geq 1} \mu_{n}\left([-M, M]^{c}\right)<\varepsilon .
$$

20. Let $\left\{X_{n} ; n=1,2, \ldots\right\}$ and X be random variables, such that $X_{n} \xrightarrow{d} X$ as $n \rightarrow \infty$. It is well known that the family of probability distributions $\left\{\mu_{X_{n}} ; n=1,2, \ldots\right\}$ is tight, meaning that for each $\varepsilon>0$, we can find an $0<M<\infty$ such that

$$
\sup _{n \geq 1} \mu_{X_{n}}\left([-M, M]^{c}\right)<\varepsilon .
$$

(i) Prove that the family of characteristic functions $\left\{\varphi_{X_{n}} ; n=1,2, \ldots\right\}$ is equicontinuous, meaning that for each $\varepsilon>0$, we can find a $\delta>0$ such that

$$
\sup _{n \geq 1}\left|\varphi_{X_{n}}(t+h)-\varphi_{X_{n}}(t)\right|<\varepsilon \quad \forall|h|<\delta, t \in \mathbb{R}
$$

(ii) Let $-\infty<a<b<\infty$. Prove that

$$
\sup _{a \leq t \leq b}\left|\varphi_{X_{n}}(t)-\varphi_{X}(t)\right| \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

21. Let $\left\{X_{n} ; n=1,2, \ldots\right\}$ and $\left\{Y_{n} ; n=1,2, \ldots\right\}$ be random variables, such that X_{n} and Y_{n} are independent for each $n=1,2, \ldots$. Show that if $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} Y$ as $n \rightarrow \infty$, then $X_{n}+Y_{n} \xrightarrow{d} X+Y$ as $n \rightarrow \infty$.
22. Give an example of a sequence of random variables $\left\{X_{n} ; n=1,2, \ldots\right\}$ which converges in distribution to a standard normal random variable as $n \rightarrow \infty$, but which also has the property that that $E\left(\left|X_{n}\right|^{k}\right)=\infty$ for each positive integer $k=1,2, \ldots$.
23. Let $\left\{X_{n} ; n=1,2, \ldots\right\}$ be independent random variables such that $E\left(X_{n}\right)=0$ for each $n=1,2, \ldots, E\left(X_{n}^{2}\right)=1$ for each $n=1,2, \ldots$, and $E\left(\left|X_{n}\right|^{2+\varepsilon}\right) \leq M$ for each $n=1,2, \ldots$, where $\varepsilon>0$ and $0<M<\infty$. Show that $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$ converges in distribution to a standard normal random variable as $n \rightarrow \infty$.
24. Let $\left\{X_{n} ; n=1,2, \ldots\right\}$ be independent random variables such that $P\left(\left|X_{n}\right| \leq C\right)=1$ for each $n=1,2, \ldots$, where $0<C<\infty$, and $\sigma_{n}^{2}=$ $V\left(\sum_{i=1}^{n} X_{i}\right) \rightarrow \infty$ as $n \rightarrow \infty$. Show that $\frac{1}{\sqrt{\sigma_{n}^{2}}}\left(\sum_{i=1}^{n} X_{i}-E\left(\sum_{i=1}^{n} X_{i}\right)\right)$ converges in distribution to a standard normal random variable as $n \rightarrow \infty$.
25. Let the random variable X have a stable distribution with characteristic function

$$
\varphi_{X}(t)=e^{-b|t|^{\alpha}} \quad \forall t \in \mathbb{R}
$$

where $0<\alpha<2$ and $b>0$. Prove that $E\left(|X|^{p}\right)<\infty$ for $p<\alpha$. Hint: Make use of the inequality

$$
P\left(|X|>\frac{2}{a}\right) \leq \frac{1}{a} \int_{-a}^{a}\left(1-\varphi_{X}(t)\right) d t \quad \forall a>0
$$

26. Let the random variable X have an infinitely divisible distribution with characteristic function φ_{X}. Prove that

$$
\varphi_{X}(t) \neq 0 \quad \forall t \in \mathbb{R}
$$

27. Let X be a random variable, with probability distribution μ_{X} and characteristic function φ_{X}. Let $Y=\left(Y_{1}, \ldots, Y_{d}\right)^{T}$ be a d-dimensional (that is, \mathbb{R}^{d}-valued) random variable with characteristic function

$$
\varphi_{Y}\left(t_{1}, \ldots, t_{d}\right)=\varphi_{X}\left(t_{1}+\cdots+t_{d}\right) \quad \forall\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{R}^{d}
$$

What is the probability distribution of Y ?
28. Let μ and ν be σ-finite measures on a measurable space (Ω, \mathcal{F}). Prove that the Lebesgue decomposition of ν with respect to μ is unique.
29. Let (X, Y) be a 2 -dimensional (that is, \mathbb{R}^{2}-valued) random variable defined on a probability space (Ω, \mathcal{F}, P). Consider the probability space $\left(\mathbb{R}^{2}, \mathcal{R}^{2}, \mu\right)$, where μ is the probability distribution of (X, Y). Assume that μ has a density f with respect to the Lebesgue measure on $\left(\mathbb{R}^{2}, \mathcal{R}^{2}\right)$. Define \mathcal{G} as the σ-algebra $\{A \times \mathbb{R} ; A \in \mathcal{R}\} \subset \mathcal{R}^{2}$.
(i) Prove that a version of the conditional probability $\mu(\mathbb{R} \times B \mid \mathcal{G})$, where $B \in \mathcal{R}$, is given by

$$
\mu(\mathbb{R} \times B \mid \mathcal{G})=\frac{\int_{B} f(x, u) d u}{\int_{\mathbb{R}} f(x, u) d u} \quad \forall(x, y) \in \mathbb{R}^{2}
$$

(ii) Prove that a version of the conditional probability $P(Y \in B \mid \sigma(X))$, where $B \in \mathcal{R}$, is given by

$$
P(Y \in B \mid \sigma(X))=\frac{\int_{B} f(X(\omega), u) d u}{\int_{\mathbb{R}} f(X(\omega), u) d u} \quad \forall \omega \in \Omega
$$

30. Let X be an integrable random variable defined on a probability space (Ω, \mathcal{F}, P). Let $Y=E(X \mid \mathcal{G})$, where $\mathcal{G} \subset \mathcal{F}$. Prove that if $E\left(Y^{2}\right)=$ $E\left(X^{2}\right)<\infty$, then $P(X=Y)=1$.
