MAI0074: HOME ASSIGNMENT PROBLEMS

Torkel Erhardsson, MAI

12 december 2019

- 1. (i) Let Ω be a set, and let $\{\mathcal{F}_i; i \in \Gamma\}$ be σ -algebras of subsets of Ω , where Γ is an arbitrary (possibly uncountable) index set. Prove, by checking all the conditions in the definition, that $\cap_{i \in \Gamma} \mathcal{F}_i$ is a σ -algebra.
 - (ii) Let Ω be a set, and let \mathcal{C} be a collection of subsets in Ω . Prove that there exists a σ -algebra \mathcal{F} such that $\mathcal{C} \subset \mathcal{F}$, and such that $\mathcal{F} \subset \mathcal{G}$ for any other σ -algebra \mathcal{G} such that $\mathcal{C} \subset \mathcal{G}$. [The σ -algebra \mathcal{F} is called the σ -algebra generated by \mathcal{C} , and is denoted by $\sigma(\mathcal{C})$.]
- 2. Let S be the semiring of bounded half-open intervals $S = \{(a, b] \subset \mathbb{R}; -\infty < a \leq b < \infty\}$. Prove that the σ -algebra generated by S is the same as the σ -algebra generated by the collection of bounded open intervals $C = \{(a, b) \subset \mathbb{R}; -\infty < a \leq b < \infty\}$, and also the same as the σ -algebra generated by the collection of open sets in \mathbb{R} . (Please recall that the collection of open sets in \mathbb{R} is not identical to C.)
- 3. Let $\Omega = (0, 1]$, let $S_0 = \{(a, b] \subset \mathbb{R}; 0 \le a \le b \le 1\}$, and let \mathcal{A}_0 be the collection of finite disjoint unions of sets in \mathcal{S}_0 . That is: $A \in \mathcal{A}_0$ if and only if $A = \bigcup_{i=1}^n B_i$, where $n \in \mathbb{N}$, and $\{B_i \in \mathcal{S}_0; i = 1, \ldots, n\}$ are disjoint sets.
 - (i) Prove that S_0 is a semiring, and that A_0 is an algebra but not a σ -algebra.
 - (ii) Define the set function $\mu : \mathcal{A}_0 \to \mathbb{R}_+$ as follows: $\mu(A) = 1$ if there exists an $\varepsilon_A > 0$ (depending on A) such that $(\frac{1}{2}, \frac{1}{2} + \varepsilon_A] \subset A$, and $\mu(A) = 0$ otherwise. Prove that μ is finitely, but not countably, additive.
- 4. Let $X : \Omega \to \mathbb{R}$ be a real valued random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{G} \subset \mathcal{F}$ be a σ -algebra. Recall the definition of $\sigma(X)$ (the σ -algebra generated by X).

- (i) Prove that X is \mathcal{G}/\mathcal{R} -measurable if and only if $\sigma(X) \subset \mathcal{G}$.
- (ii) Prove that if $\mathcal{G} = \{\emptyset, \Omega\}$, then X is \mathcal{G}/\mathcal{R} -measurable if and only if X is constant.
- (iii) Assume that $\mathbb{P}(A) \in \{0,1\}$ for all $A \in \mathcal{G}$. Prove that if X is \mathcal{G}/\mathcal{R} -measurable, then $\mathbb{P}(X=c) = 1$ for some constant $c \in \mathbb{R}$.
- 5. Let X and Y be real valued random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Prove that Y is $\sigma(X)$ -measurable if and only if there exists a \mathcal{R}/\mathcal{R} -measurable function $f : \mathbb{R} \to \mathbb{R}$ such that $Y = f \circ$ X. <u>Hint:</u> For the "only if" part, prove the claim first for Y a simple function, then for Y nonnegative, then for a general Y.
- 6. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and let $f : \Omega \to \mathbb{R}_+$ be integrable. Define the set function $\nu : \mathcal{F} \to \mathbb{R}_+$ by

$$\nu(A) = \int_A f d\mu = \int I_A f d\mu \qquad \forall A \in \mathcal{F}.$$

- (i) Prove that ν is a measure.
- (ii) Prove that for each $\varepsilon > 0$ there exists a $\delta > 0$ such that if $\mu(A) < \delta$, then $\nu(A) < \varepsilon$.
- 7. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and let $\{f_n : \Omega \to \mathbb{R}; n = 1, 2, ...\}$ be integrable functions such that $f_n \uparrow f$, meaning (as usual) that $\{f_n; n = 1, 2, ...\}$ is a non-decreasing sequence which converges pointwise to a function $f : \Omega \to \mathbb{R}$. Prove that if $\sup_{n \ge 1} \int f_n d\mu < \infty$, then f is integrable and $\int f_n d\mu \to \int f d\mu$ as $n \to \infty$. (Please note that we are not assuming $\{f_n; n = 1, 2, ...\}$ to be nonnegative.)
- 8. A function $f : (a, b] \to \mathbb{R}$ on a bounded interval $(a, b] \subset \mathbb{R}$ is said to be Riemann integrable, with Riemann integral r, if the following condition holds: for each $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$\left|r-\sum_{i=1}^{n}f(x_{i})\nu(I_{i})\right|<\varepsilon,$$

for any finite partitioning of (a, b] into disjoint subintervals $\{I_i; i = 1, \ldots, n\}$ satisfying $\max_{i=1,\ldots,n} \nu(I_i) < \delta$, and any set of real numbers $\{x_i \in I_i; i = 1, \ldots, n\}$. (Here, ν is the Lebesgue measure.)

Assume that f is Borel measurable and bounded. Prove that if f is Riemann integrable, the Riemann integral coincides with the Lebesgue integral.

- 9. Let $\{X_i; i = 1, 2, 3\}$ be independent random variables such that $\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = 0.5, i = 1, 2, 3$. Let $X_4 = X_1 X_2 X_3$. Prove that any three of the four random variables $\{X_1, X_2, X_3, X_4\}$ are independent, but that the four random variables $\{X_1, X_2, X_3, X_4\}$ are not independent.
- 10. Let X be a real valued random variable with cumulative distribution function $F_X : \mathbb{R} \to [0, 1]$. Recall that $F_X(x) = \mathbb{P}(X \leq x)$ for each $x \in \mathbb{R}$.
 - (i) Let $c \in \mathbb{R}$. Prove that (the Lebesgue integral) $\int_{-\infty}^{\infty} (F_X(x+c) F_X(x)) dx = c$.
 - (ii) Assume that F_X is a continuous function. Prove that $\mathbb{E}(F_X(X)) = 0.5$.
- 11. Let $\{X_t; t = 1, 2, ...\}$ be a countably infinite sequence of random variables, defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Prove that $\{X_t; t = 1, 2, ...\}$ are independent if and only if the *n*-dimensional random variable $(X_1, ..., X_n)^T$ is independent of X_{n+1} for each n = 1, 2, ... (meaning that $\sigma(X_1, ..., X_n)$ is independent of $\sigma(X_{n+1})$ for each n = 1, 2, ...).
- 12. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let the events $A_i \in \mathcal{F}$, $i = 1, 2, \ldots$, be independent. Let $S_n = \sum_{i=1}^n I_{A_i}$ for each $n = 1, 2, \ldots$. Prove that $\frac{S_n}{n} - \frac{1}{n} \sum_{i=1}^n P(A_i)$ converges to 0 in probability as $n \to \infty$.
- 13. Let $\{X_t; t = 1, 2, ...\}$ be i.i.d. random variables, such that

$$P(X_1 = (-1)^k k) = \begin{cases} \frac{a}{k^2 \ln k} & \text{for } k = 2, 3, \dots, \\ 0 & \text{otherwise,} \end{cases}$$

where $a = \left(\sum_{k=2}^{\infty} \frac{1}{k^2 \ln k}\right)^{-1}$. Let $S_n = \sum_{i=1}^n X_i$ for each n = 1, 2, ...

- (i) Show that $E(|X_1|) = \infty$.
- (ii) Show that there is a finite constant γ such that $\frac{S_n}{n} \xrightarrow{p} \gamma$.
- 14. Let $\{X_t; t = 1, 2, ...\}$ be independent random variables, such that $X_n \xrightarrow{p} 0$. Does it follow that $\frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p} 0$? Prove, or disprove by means of a counterexample.
- 15. Let $\{X_n; n = 1, 2, ...\}$ be iid random variables, such that $P(X_1 = 2^k) = 2^{-k}$ for each k = 1, 2, ... Prove that $P(\limsup_{n \to \infty} \frac{X_n}{n \ln n} = \infty) = 1$.

- 16. Let $\{X_i; i = 1, 2, ...\}$ be independent (not necessarily identically distributed) random variables, and let $S_n = \sum_{i=1}^n X_i$ for each n = 1, 2, ...Prove that if $E(X_i) = 0$ for each i = 1, 2, ..., and $E(X_i^4) \leq C$ for each i = 1, 2, ..., where $C \in (0, \infty)$ is a constant, then $\frac{S_n}{n}$ converges to 0 almost surely as $n \to \infty$.
- 17. Let $\{X_i; i = 1, 2, ...\}$ be independent (not necessarily identically distributed) random variables. Define the random power series B by $B(s) = \sum_{k=0}^{\infty} X_k s^k$.
 - (i) Prove that the convergence radius of B is, with probability 1, equal to a *deterministic* constant $r \in [0, \infty]$.
 - (ii) Assume that $\{X_i; i = 1, 2, ...\}$ are iid random variables such that $\mathbb{P}(X_1 \neq 0) > 0$. Prove that the constant r is either 1 or 0, depending on whether the expectation $\mathbb{E}(\ln^+ |X_1|)$ is finite or infinite. (Here, $\ln^+ x = \ln(\max(x, 1))$.)
- 18. Let $\{X_n; n = 1, 2, ...\}$ and $\{Y_n; n = 1, 2, ...\}$ be random variables. Assume that $X_n \to X$ in distribution as $n \to \infty$, where X is a random variable, and that $Y_n \to a$ in distribution as $n \to \infty$, where $a \in \mathbb{R}$ is a constant. Prove that $X_n + Y_n \to X + a$ in distribution as $n \to \infty$.
- 19. Let $\{\mu_n; n = 1, 2, ...\}$ be probability measures on $(\mathbb{R}, \mathcal{R})$. Let $f : \mathbb{R} \to [0, \infty)$ be a nonnegative measurable function such that $f(x) \to \infty$ as $x \to \pm \infty$. Prove that if

$$\sup_{n\geq 1}\int f(x)d\mu_n(x)<\infty,$$

then $\{\mu_n; n = 1, 2, ...\}$ is tight, meaning that for each $\varepsilon > 0$, we can find an $0 < M < \infty$ such that

$$\sup_{n\geq 1} \mu_n([-M,M]^c) < \varepsilon.$$

20. Let $\{X_n; n = 1, 2, ...\}$ and X be random variables, such that $X_n \xrightarrow{d} X$ as $n \to \infty$. It is well known that the family of probability distributions $\{\mu_{X_n}; n = 1, 2, ...\}$ is tight, meaning that for each $\varepsilon > 0$, we can find an $0 < M < \infty$ such that

$$\sup_{n\geq 1} \mu_{X_n}([-M,M]^c) < \varepsilon.$$

(i) Prove that the family of characteristic functions $\{\varphi_{X_n}; n = 1, 2, ...\}$ is equicontinuous, meaning that for each $\varepsilon > 0$, we can find a $\delta > 0$ such that

$$\sup_{n\geq 1} |\varphi_{X_n}(t+h) - \varphi_{X_n}(t)| < \varepsilon \qquad \forall |h| < \delta, t \in \mathbb{R}.$$

(ii) Let $-\infty < a < b < \infty$. Prove that

$$\sup_{a \le t \le b} |\varphi_{X_n}(t) - \varphi_X(t)| \to 0, \quad \text{as } n \to \infty.$$

- 21. Let $\{X_n; n = 1, 2, ...\}$ and $\{Y_n; n = 1, 2, ...\}$ be random variables, such that X_n and Y_n are independent for each n = 1, 2, ... Show that if $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y$ as $n \to \infty$, then $X_n + Y_n \xrightarrow{d} X + Y$ as $n \to \infty$.
- 22. Give an example of a sequence of random variables $\{X_n; n = 1, 2, ...\}$ which converges in distribution to a standard normal random variable as $n \to \infty$, but which also has the property that that $E(|X_n|^k) = \infty$ for each positive integer k = 1, 2, ...
- 23. Let $\{X_n; n = 1, 2, ...\}$ be independent random variables such that $E(X_n) = 0$ for each $n = 1, 2, ..., E(X_n^2) = 1$ for each n = 1, 2, ..., and $E(|X_n|^{2+\varepsilon}) \leq M$ for each n = 1, 2, ..., where $\varepsilon > 0$ and $0 < M < \infty$. Show that $\frac{1}{\sqrt{n}} \sum_{i=1}^n X_i$ converges in distribution to a standard normal random variable as $n \to \infty$.
- 24. Let $\{X_n; n = 1, 2, ...\}$ be independent random variables such that $P(|X_n| \leq C) = 1$ for each n = 1, 2, ..., where $0 < C < \infty$, and $\sigma_n^2 = V(\sum_{i=1}^n X_i) \to \infty$ as $n \to \infty$. Show that $\frac{1}{\sqrt{\sigma_n^2}}(\sum_{i=1}^n X_i E(\sum_{i=1}^n X_i))$ converges in distribution to a standard normal random variable as $n \to \infty$.
- 25. Let the random variable X have a stable distribution with characteristic function

$$\varphi_X(t) = e^{-b|t|^{\alpha}} \qquad \forall t \in \mathbb{R},$$

where $0 < \alpha < 2$ and b > 0. Prove that $E(|X|^p) < \infty$ for $p < \alpha$. <u>Hint:</u> Make use of the inequality

$$P(|X| > \frac{2}{a}) \le \frac{1}{a} \int_{-a}^{a} (1 - \varphi_X(t)) dt \qquad \forall a > 0.$$

26. Let the random variable X have an infinitely divisible distribution with characteristic function φ_X . Prove that

$$\varphi_X(t) \neq 0 \qquad \forall t \in \mathbb{R}.$$

27. Let X be a random variable, with probability distribution μ_X and characteristic function φ_X . Let $Y = (Y_1, \ldots, Y_d)^T$ be a *d*-dimensional (that is, \mathbb{R}^d -valued) random variable with characteristic function

$$\varphi_Y(t_1,\ldots,t_d) = \varphi_X(t_1+\cdots+t_d) \quad \forall (t_1,\ldots,t_d) \in \mathbb{R}^d.$$

What is the probability distribution of Y?

- 28. Let μ and ν be σ -finite measures on a measurable space (Ω, \mathcal{F}) . Prove that the Lebesgue decomposition of ν with respect to μ is unique.
- 29. Let (X, Y) be a 2-dimensional (that is, \mathbb{R}^2 -valued) random variable defined on a probability space (Ω, \mathcal{F}, P) . Consider the probability space $(\mathbb{R}^2, \mathcal{R}^2, \mu)$, where μ is the probability distribution of (X, Y). Assume that μ has a density f with respect to the Lebesgue measure on $(\mathbb{R}^2, \mathcal{R}^2)$. Define \mathcal{G} as the σ -algebra $\{A \times \mathbb{R}; A \in \mathcal{R}\} \subset \mathcal{R}^2$.
 - (i) Prove that a version of the conditional probability $\mu(\mathbb{R} \times B|\mathcal{G})$, where $B \in \mathcal{R}$, is given by

$$\mu(\mathbb{R} \times B | \mathcal{G}) = \frac{\int_B f(x, u) du}{\int_{\mathbb{R}} f(x, u) du} \qquad \forall (x, y) \in \mathbb{R}^2.$$

(ii) Prove that a version of the conditional probability $P(Y \in B | \sigma(X))$, where $B \in \mathcal{R}$, is given by

$$P(Y \in B | \sigma(X)) = \frac{\int_B f(X(\omega), u) du}{\int_{\mathbb{R}} f(X(\omega), u) du} \qquad \forall \omega \in \Omega.$$

30. Let X be an integrable random variable defined on a probability space (Ω, \mathcal{F}, P) . Let $Y = E(X|\mathcal{G})$, where $\mathcal{G} \subset \mathcal{F}$. Prove that if $E(Y^2) = E(X^2) < \infty$, then P(X = Y) = 1.