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Outline

e Common concepts for single-solution based metaheuristics
* Neighborhood

 Very large neighborhoods
» Heuristic search in large neighborhood
» Exact search in large neighborhood

 |nitial solution

 Fitness landscape analysis
 Distance in search space
 Landscape properties



Single-Solution Based Metaheuristics
(S-metaheuristics)

 Improve a single solution
« walk though neighborhoods by performing iterative procedures that move
from the current solution to another one in the search space
« Have two Iterative phases:
» Generation phase
* Replacement phase



Main Principles of S-metaheuristics

A set of candidate solutions
are generated from the current
i Generate
solution s

candidates

A selection is performed from Select
the candidate solution set C(s) solution

Candidate
solutions




Neighborhood

* Neighborhood

» A neighborhood function N is a mapping N : S — 2~ that assigns to each
solution s of S a set of solutions N(s) C S.

 Move operator m

» Depends strongly on the representation
« Continuous or discrete space

 Locality: the effect on the solution when performing the move in the
representation
o Strong locality
o Weak locality



Neighborhood of a continuous and a discrete
binary problem
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with two dimensions.

- Nodes of the hypercube represent
solutions of the problem.

- The neighbors of a solution (e.g., (0,1,0))
are the adjacent nodes in the graph.
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Local optimum

Definition 2.4 Local optimum. Relatively to a given neighboring function N, a

solution s € S is a local optimum if it has a better quality than all its neighbors; that
is, f(s) < f(s") forall s’ € N(s) (Fig. 2.4).

A Objective

Local optima
Local optima

\anal and global optima

>

Search space



k-distance neighborhood vs. k-exchange
neighborhood
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FIGURE 2.6 3-opt operator for the TSP The neighbors of the solution (A.B.C.OVE F) are
(ABFEECDL IABDCEEY, (ABEFCD, and (AB.EED.C).

2-0p1 Operatar
adpas (A, 0 and [, E)

Not good for scheduling problems: 2-opt operator

(F— (2 . . will generate a very large variation (weak locality)

I8 hber (A B G0 E 4] us 2eppt pparatn
Currant salition e o B A using a 2-ppt oparator

(A, 0,C E DA removing adges (A,D0 and (CE)

FIGURE 2.5 City swap operator and 2-opt operator for the TSP



Neighborhood for permutation scheduling
problems

e Position-based e Order-based
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Very large neighborhoods
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FIGURE 2,10 Tropact of the size of the neighborbond in local search, Large neighborhionds
improving the quality of the search with an expense of a higher computational 1ime.
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Very large neighborhood
strategies

Very large neighborhood

Criginal problem Restricted problem

Heuristic search in Exact search in
large neighborhoods large neighborhoods

AN

shortest path Bipartite matching
(dynamic programming)
Variable depth Ejection chains Cyclic operator l l

Dynasearch Asslgnment
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Heuristic search In large
neighborhoods

o A partial set of the large neighborhood is generated — Finding the best
neighbor Is not guaranteed

 Variable depth methods: k-distance or k-exchange

e Ejection chains: a sequence of coordinated moves, alternating paths
methods that Is alternating sequence of addition and deletion

» Cyclic exchange: for partitioning problems



Ejection chain
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FIGURE 2.12 A four-level ejection chain for vehicle routing problems. Here, the ejection
chain 1s based on a multinode insertion process.




Cyclic exchange

Cyclic exchange (3,4,2)

FIGURE 2.13 Very large neighborhood for partitioning problems: the cyelic exchange
operator. Node a- 15 moved from subset S: to subset 8y, node as 15 moved from subset §;
to subset Sy, and node ay s moved rom subset 55 o subset S5,
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Very large neighborhood
strategies

Very large neighborhood

Criginal problem Restricted problem

Heuristic search in Exact search in
large neighborhoods large neighborhoods

AN

shortest path Bipartite matching
(dynamic programming)
Variable depth Ejection chains Cyclic operator l l

Dynasearch Asslgnment
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Exact search in large neighborhoods

* The main goal Is to find an improving neighbor, search large
neighborhood in a polynomial time
o Path finding: shortest path and dynamic programming
e Matching: well-known polynomial time matching

®  Definition 2.6 Independent swaps. Given a permutation T = {m, T2, ..., Ty}, a

swap move (i, j) consists in exchanging the two elements m; and 7 j of the permutation
. Two swap moves (i, j) and (k, ) are independent if (max{i, j} < min{k,l}) or
(min{i, j} > max{k,I}).



Exact search in large neighborhoods (cont.)

» Dynasearch
» Polynomial exploration of exponentially large neighborhood

» Where solutions are encoded by permutation
« Two-exchange move, based on a Hamiltonian path between (1) and m(n)
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FIGURE 2.14 Dynasearch using two independent two-exchange moves: polynomial
exploration of exponentially large neighborhoods.



Polynomial-specific neighborhood

« Some NP hard problems maybe solved in polynomial time for some
restricted input instances

e Halin graph: TSP

degree-2 vertices and (_:_anecfl'h" '
ses none of@edges'"

ree rnavi

If formed by embed
cycle that

FIGURE 2.17 Extending a given input instance to a Halin graph.



Initial solution

e Strategies:
« Random: quick but might take much larger number of iterations to converge
o Greedy: faster but not always is better
» Hybrid: combining both random and greedy approaches

* Trade off between quality of the solutions and computational time



Incremental Evaluation of the Neighborhood

 The evaluation of objective function is expensive
% A complete evaluation of the objective function

Incremental evaluation: evaluation A(s, m) of the objective function
(s: the current solution, m: the applied move)

f(sh= f(s®dm)



Fitness landscape analysis

o Superiority of algorithms: No algorithm is always the best

o Effectiveness of metaheuristics depends on:
 Properties of the landscape(roughness, convexity,etc)
e Instances to solve

 Landscape is defined by :
* Representation
* Neighborhood
* Objective function

* Is performed in the hope to predict the behavior of different search
components (representation, search operators, and objective function)
of a metaheuristic



Definitions

» Search space: A directed graph G = (S,E), where set of vertices S
corresponds to the solutions of the problem, and E corresponds to the
move operators

 Fitness landscape: The fitness landscape | may be defined by the
tuple (G,f), where f represents objective function that guides the search



Representation of landscape using the
geographical metaphor

Flat, plain — P

Rugged valley




Conexity of the search space

« For any solutions s; and s;, there should be a path from s; to s; > Form
any initial solution s; there will a path to the S*

Initial solution Optimal solution

FIGURE 2.18 Connexity of the search space related to the graph coloring problem. The
optimal solution cannot be reached from the given initial solution.
24



Distance Is search space

« The minimum number of applications of the move operator to obtain
solution S; from solution S

 Properties: separative, symmetrical, triangular

e Distance in usual search spaces

* Binary representations and flip move aperator (Hamming distance), Size of
Search space = 2", Diameter = n

* Permutation representations and the exchange move operator, Size of Search
space = n! , Diameter = n-1

» Coherent Distance: must be related to the search operator



Landscape properties

 Landscape properties indicators
e Global
e Local

» Two different statistical measures:
 Distribution measures : study the topology of local optima solutions

« Correlation measures: analyze the rugosity of the landscape and the correlation
between the quality of solutions and their relative distance



Distribution measures

» Objective: distribution analysis of the local optimal solutions in the
landscape projected both in the search space G and in the objective
space f

e Distribution indicators
 Distribution in the search space
 Entropy In the search space
« Distribution in the objective space



Distribution In the search space

 For a population P of S:

* Average distance |
) D seP 2 tcPi £ 5 dist(s, 1)

dmm(FP) = :
|Pl-(|P] = 1)
* Normalized average distance
dmm ( P)
Dmm(FP) = — -
diam(§)

* Diameter of a population

diam( P) = max dist(s, f)

5. 0e

A weak distance: solutions belonging to the population P are clustered in a small region of the
search spcae
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Entropy

* To measure diversity of a given population in the search spcae
 Different mathematical formulation
» Weak: reveals a concentration of solutions
 High: shows an important dispersion of the solution in the search space



Distribution In the objective space

« The amplitude of an arbitary population P of solutions is the relative
difference between the best quality of the population P and the worst

one.
| P|-(maXsep f(s) — minsep f(5))

Z,'S.E r f(!"}

 Relative variation of Amp between a starting random population and
the final population:

Amp (P) =

Amp (U) — Amp (0O)
Amp (U)

e The average gap of the relative gaps between the cost of the
population of the local optima and the global optima solutions:

ﬂ"lﬁnm —

x_\-efj (f(s)— f(s%)

PO = ol T




Correlation measures

* Objective: estimate the ruggedness of the landscape along with the
correlation between the quality of solutions and their distance to a global
optimal solution

e Correlation indicators
 Length of the walks
o Autocorrelation function
Fitness distance correlation
Deception
Epistasis
Multimodality
Neutrality
Fractal



Length of the walks

EFEP f{f}}
| P
I(P): The length of the walk starting with the solutionp € P
 Information about ruggedness
e More number of optima and short walks: rugged

e Few number of optima and long walks: smooth

Lmm(P) =



Autocorrelation function

* Measures the ruggedness
 Correlation of solutions in the search space with distance d

> sreSxs.dists.n—d S — HU@ = f)

p(d) = 5
H,D'f

P(1) considers only neighboring solutions

» A low value: the variation of fitness between two neighbors is equal on
average to the variation between any two solutions and the landscape
IS rugged



Autocorrelation function(cont.)

 Random walk:

Z_: (fx))— P)(fxps)— f)  mesize of random walk

r(s) = —
op(m —s) = s: distance between solutions

 Correlation length

I |
[ = =—
In(|r(D]) In(|p(D])

* The smaller is the correlation length, the more rugged is the associated
landscape and harder is the search.



Fitness distance correlation

e Measures how much the fitness of a solution correlates with the
distance to the global optimum

F={f1fo - fal D ={dy,d;, ..., dn}

B cov(F, D)

D’_;'Uﬂr

2

l iy _ _
coV(F. D)=~ (fi— [)di —d)
i=1



Fitness distance correlation (cont.)

 FCD

o Straightforward

* large positive

 easy to solve

* as the fitness decreases, the distance to the global optimum also decreases
* Misleading

 Large negative

* The move operator will guide the search away from the global optimum
 Difficult

e Near-zero

» There is no correlation between fitness and distance



Fitness distance correlation (cont.)

* Fitness distance plot: fitness of the solutions against their distance to
the global optima

[
L.
L

140 000

H I K
&l I ) 9 | H

2-opt 'i:i III' City-swap ‘
llllllll i cogth .
. i e : ;-. H

i T a
it %
e il
L i..;!in.”"
.Iliﬂ”"h!” : L i h
0 50 -

FIGURE 2.19 Using the FDC analysis, the figure shows the fitness distance plot of the
instance arr4s of the TSP using the 2-opt and the city-swap neighborhood structures. The lett
figure for the 2-opt shows a high FDC (0.94) and the right figure shows a less important FDC
for the city-swap operator (0.86). For the problem instance /sp223, the FDC is 0.99 for the
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Breaking plateaus in a flat landscape

Definition 2.10 Plateau. Given a point s in the search space S and a v value
taken in the range of values of the criterion f. Given N(s), the set of points s' in the

neighborhood of the solution s. Considering X a subset of N(s) defined by s € X iff
f(s"Y = v, X is a plateau iff it contains at least two elements (i.e., | X| = 2).
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Breaking plateaus In a flat landscape (cont.)

* A metaheuristic has difficulties to be guided in the neighborhood of
the current solution

e Changing objective function (embedding more information to have a
significant improvement in quality of the related solutions)

« Discrimination criterion f', can discriminate points that have the same value
for the main criterion f

 Solutions with the same value in the objective space but with different value
with regarded to decision space

ffx) =k x f(x)+ f'(x)
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