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MULTIOBJECTIVE OPTIMIZATION CONCEPTS
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Multiobjective optimization problems (MOP)

* There are many conflicting objectives to

handle

* Pareto optimal solution

* Itis not possible to improve a given objective without

deteriorating at least another objective

* Mostly focused on P-metaheuristics




MOP

{min F(x) = (fi(x), f2(x), ..., [u(2))
MOP =
S.C.XE N

* x=(x,...,X): vector representing the decision

variables

* S: the set of feasible solutions
* F(x): the vector of objectives to be optimized
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FIGURE 4.1 Decision space and objective space in a MOP.




Definitions

Definition 4.2 Pareto dominance. An objective vector u = (uy, ..., u,) is said
to dominate v = (vy, ..., vy) (denoted by u < v) if and only if no component of v is
smaller than the corresponding component of u and at least one component of u is

strictly smaller, that is,

Vie{l,....n}: wg; <v; A dief{l,...,n}: u; <v;
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Definitions

Definition 4.3 Pareto optimality. A solution x* € S is Pareto optimal® if for every
x € 8§, F(x) does not dominate F(x*), that is, F(x) # F(x*).

Definition 4.4 Pareto optimal set. For a given MOP (F, S), the Pareto optimal set
is defined as P* = {x € S§/3x" € §, F(x') < F(x)}.




Pareto front

Definition 4.5 Pareto front. For a given MOP (F, §) and its Pareto optimal set
P*, the Pareto front is defined as PF* = {F(x), x € P*}.

* The image of the Pareto optimal set in the objective
space

* The main goal of MOP




Desired Pareto front
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FIGURE 4.3 Examples of Pareto fronts: bad convergence and good diversity (left), good
convergence and bad diversity (center), good convergence and diversity (right).




Definitions

Definition 4.6 Ideal vector. A point y* = (y].y3.....¥}) is an ideal vector if
it minimizes each objective function f; in F(x), that is, y¥ = min( fi(x)).x € §.i €
[1,n].

Definition 4.7 Reference point. A reference point 7* = [Z1,7a, ..., T, is a vector
that defines the aspiration level (or goal) Z; to reach for each objective f;.

Definition 4.8 Nadir point. A point y* = (¥}, ¥v3. ..., v3) is the nadir point if
it maximizes each objective function f; of F over the Pareto set, that is, v =
max( fi(x))., x &€ P* i€ [l,n]

The ideal and nadir points give some information on the ranges of
the Pareto optimal front




Definitions

Definition 4.9 Utility function. A wtility (or value) function v, which represents
the preferences of the decision maker, maps the objective vector to a scalar-valued
function: v: R" — R.

Definition 4.10 Locally Pareto optimal solution. A selurion x is locally Pareto
optimal if and only if YVw € N(x), F(w) does not dominate F(x), and N(x) represents
the neighborhood of the solution x.

min F(x) = 3 A; filx)
(MOP;) 4';1 #

sCc.xe §




Definitions

Definition 4.11 Weak dominance. An objective vector u = (uy, ..., uy) is said

to weakly dominate v = (vi,..., vn) (denoted by u = v) if all components of u
are smaller than or equal to the corresponding components of v, that is, Vi €

{1,....n}, u; < v;(Fig. 4.5).

Definition 4.12 Strict dominance. An objective vector u = (uy. . ... uy) is said

to strictly dominate v = (vy. ..., v,) (denoted by u <= v) if all components of u are
smaller than the corresponding components of v, that is, Vi e {1,..., n}, u; < vj

Definition 4.13 e-Dominance. An objective vector u = (uy, ..., uy) is said to
e-dominate v = (vy, ..., vy) (denoted by u <¢ v) if and only if no component of v
is smaller than the corresponding component of u — € and at least one component
of u — € is strictly better, thatis, Vi€ {1, ... ,n}: ui—ei <vi A Jiel{l,... . n}:
uj — €i < vj (Fig. 4.6).
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Weak dominance and strict dominance concepts. Solution u weakly dominate
solution v; solution u” weakly dominates solution v’; solution u strictly dominates
solutions v and v”.
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MULTIOBJECTIVE OPTIMIZATION PROBLEM




Categories and applications

® Two categories:
® continuous
® discrete

® Academic applications
® Real-Life applications

™




Academic applications

~ Multiobjective Continuous Problems

min F(x) = (fi(x), fo{x), ..., fulz))

subject to
.......

® Well-known test problems (standard

benchmarks):

® /DT
®DTLZ




Academic applications

® Multiobjective Combinatorial Problems
® |ack of “standard” benchmarks

® Two complexity categories:
Polynomial problems: shortest path,
spanning tree problems, assignment problems
NP-hard problems: scheduling problems,

routing problems




Multiobjective scheduling
problems
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Coey  Makespan (total completion time): max{C;|i € [1...n]}
C:  Mean value of jobs completion time

Too:  Maximum tardiness: max{[max(0, C; — d)]li €[1...n])
T Tolal tardiness: Z: [max(0, C; — )]

U:  Number of jobs delﬁ}ed with regard to their due date 4
Fra:  Maximum job flow-time: max{C; —r;[i € [1...n]}

F: Mean job flow-time




Real-life applications

® Engineering design

® Environment and energetics

® Telecommunications

® Control

® Computational biology and bioinformatics
® Transportation and logistics




Multicriteria decision making

® There is a need for interaction between
the decision maker and the problem
solver:
® A priori
® A posteriori
® |ntercative
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