4.3 Main design issues of multiobjective metaheuristics
4.4 Fitness assignment strategies

Adrian Horga



4.3 Main design issues of multiobjective
metaheuristics



» Algorithms for solving MOPs

- Exact
» Useful for small problem sizes
- Approximate

* Needed if we have more than two criteria or large scale

* Design and solve with:

- Concepts from monoobjective metaheuristics
- Fitness assignment

- Diversity preserving

- Elitism



Multiobjective optimization methods

Preferences /N

A priori Interactive A posteriori

Resolution algorithms

Exact Approximate
A (specific, approximation, metaheuristics)
Branch and Dynamic A*, Constraint Resolution approaches

X (bound, cut, price) programming programming

Scalar Criterion based Dominance based Indicator based

Aggregation Weighted Goal Achievement Goal <-constraint
metrics programming functions attainment

Parallel Lexicographic
(sequential)

FIGURE 4.9 C(lassification of multiobjective optimization algorithms.
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4.4 Fitness assignment strategies



» Scalar approaches

» Criterion-based approaches
 Dominance-based approaches
* |[ndicator-based approaches



* Transform MOP problem into monobjective one
 Many methods

- Aggregation method

- Weighted metrics

- Goal programming

- Achievement functions
- Goal attainment

- €-constraint



e Aggregation function to transform into monoobjective
function

* f) = il Xi fi(x), x e S
» Selection of weights A
— A priori single weight
— A priori multiple weights
- Dynamic multiple weights
- Adaptive multiple weights

* Not working with nonconvex Pareto borders



» Define reference point z to attain -
minimize distance between solution and z

* Lp-metric

- 1<p<o

= MIOPOL.E) { mjn(}éjl Al () — Zj|P)

P

s.c. x & S



» Decision maker defines aspiration levels for
each objective function — minimize the
deviations associated with the objective
functions

* Goals are easy to define by decision maker

° mjn(Z)\.ij)
g==l

(MOP(2)) S.C. fj(x) — Sj = Z 5 Jell, n]
x e S



* No need to choose reference point carefully

(MOP(A-, Z)) min maxje[lan] [wf(fj(x) _ Zj)] + pjgl (fj(](f) — z])

s.c.xe S



» Define the weight vector and the goals
* FIind the best compromise solution

o »
min «

s.c.x e S

fi(x) =< z7 + oA, I — liowss 12)

> A= 1
i=1



* Optimize one objective function (k) to
constraint the rest
° [ min fi(x)

(MOPr(e)) x € S
ks.c.fj(x)sej, JT=lszs33s n, j+k




* You need a priori knowledge of the problem
* Low computational cost

» Pareto optimality Is guaranteed but finds
only one solution

» Sensitive to convexity, discontinuity, etc.



* Mainly based on P-metaheuristics

» Parallel approach
- All objectives are handled in parallel

- EX.: split populations and use different objective
function for each subgroup (VEGA alg.)

» Sequential or Lexicographic approach

- Order the objective functions by priority
- Solve one at the time



 Dominance in the fithess assignment

« Ranking methods

— Dominance rank

* Rank — number of solutions in the population that dominate the
considered solution

- Dominance depth
« Compose solution fronts starting from the nondominating ones
- Dominance count
 Number of solutions dominated by the solution
- Other: guided dominance, fuzzy dominance, cone dominance
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FIGURE 4.16 Fitness assignment: some dominance-based ranking methods.
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» Search Is guided by performance quality
iIndicator

* Optimization goal given by binary indicator “I”

* I(A, B) — difference in quality between two sets
* R — reference set

« QO — space of all efficient set approximations

* Optimization goal: agmingeal(A, R)



* The decision maker preference may be easily
Incorporated into the optimization algorithm

* No diversity maintenance; it is implicitly taken into
account in the performance indicator definition.

« Small sensitivity of the landscape associated with
the Pareto front

* Only few parameters are defined in the algorithm
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