
Ant-colony optimization of event orders at

shunting yards
Final project for the course Heuristic search methods

Sara Gestrelius

January 25, 2016

Abstract

In order to serve many origin-destination pairs freight transportation
companies often operate a hub-and-spoke network. The hubs are shunt-
ing yards, where arriving trains are decoupled and their cars sorted into
new departing trains. Shunting yards often consists of three sub-yards:
an arrival yard, a classification bowl (where the cars are sorted) and a
departure yard. Finding the most efficient sorting procedure in terms of
effort is an NP-hard problem, even if only the classification bowl is con-
sidered. Optimization models for this classification bowl problem have
been devised, but they require the arrival and departure yard schedules,
including the times for when trains are rolled in and out of the classi-
fication bowl, to be pre-defined. In this project an ant colony heuristic
for finding good arrival and departure yard schedules is constructed, and
different pheromone update strategies are tested.

1 Introduction

Operating a hub-and-spoke network is often cost effective when serving many
origin-destination pairs, and is used by e.g. airline companies and large freight
companies, including some train freight companies.

For freight trains the hubs are shunting yards where cars from incoming
trains are sorted into new departing trains. Shunting yards often consist of
three sub-yards: the arrival yard, the classification bowl and the departure yard
(see Figure 1). The incoming trains arrive to the arrival yard where they are
decoupled and inspected before they are rolled into the classification yard where
they are to be sorted into new outbound trains. The classification yard has two
types of tracks: train formation tracks and mixing tracks. Train formation
tracks are where the outbound trains are built. An outbound train is built
on one and only one formation track, and while a train is being built on a
formation track no cars belonging to other outbound trains may be rolled to
that formation track. On the other hand, mixing tracks can host a mixture of
cars, and are used to store cars whose departing train has yet to be allocated
a train formation track. The cars on the mixing track are pulled back to the
arrival yard at given points in time. They are then once again rolled into the
classification yard, allowing for the cars to be rolled to their allocated train
formation track. Mixing cars results in extra work and wears on the yard, and

1



arrival
yard

departure
yard

hump

hump
track

classification tracks

classification bowl

Figure 1: Lay-out of a shunting yard.

should be avoided if possible. The number of mixed cars can therefore be used
as a measure of schedule inefficiency (i.e. the number of mixed cars should
be minimized to get an efficient schedule). Once an outbound train has been
completely built on the classification yard it can be rolled to the departure yard
and wait there for its departure time. All sub-yards have a certain capacity,
and all operations (inspections, rolling, decoupling and coupling) take a certain
amount of time (see Section 1.1). A feasible shunting schedule must respect all
capacity and time constraints.

The sorting in the classification bowl is the core of the shunting operation.
Optimization models for this sorting problem have previously been developed
[1]. However, the sorting problem on the classification bowl depends on the roll-
in and roll-out order of the trains, and different roll-in and roll-out orders will
result in different optimal values of the classification bowl problem. The aim of
this report is to investigate the feasibility of using an ant-colony algorithm to
generate roll-in and roll-out schedules that define a classification bowl problem
that has a good optimal solution. The ultimate goal is to use the ant colony
algorithm to generate arrival and departure yard schedules that are feasible
with respect to capacity and timing constraints, and then use the optimization
model to find the cost of the shunting given the arrival and departure yard
schedules. However, in this report a simplified way of measuring the effectiveness
of the arrival and departure yard schedules is used rather than the optimization
model itself. This heuristic for determining the effectiveness of the arrival and
departure yard schedules could be used in combination with the optimization
model to limit the running time of the overall problem solving also in the final
version.

1.1 Problem definition

Assume that the arrival yard has a tracks, the classification bowl c tacks and
the departure yard d tracks. Assume that all tracks are long enough to host all
trains.

Further, there are certain time constraints that must be fulfilled. First of all,
the time needed for inspection and decoupling at the arrival yard means that
the roll-in time of a train i, tir must be at least a time interval δa later than the
arrival time, tiA. Further, there must be at least δc between the last roll-in to
a departing train d and its roll-out time, tdr (to allow time for rolling, coupling
and inspection), and at least δd between the roll-out and the departure time
(tdD) (time needed for car rolling and departure inspection). There must also be
δr time between two roll-ins, and δo

2



2 Ant-colony algorithm

In an ant-colony algorithm ants generate solutions by, to some extent, following
pheromone trails or weights from previous ants. The cost of a solution is used to
decide if other ants should be encouraged to generate solutions that are similar
to the current one or not. This encouragement is accomplished by updating
the pheromone trails. In this section we first discuss the encoding of the prob-
lem, and then the solution construction method used by the ants. Finally the
pheromone update process is introduced.

2.1 Encoding

The main feature defining the problem is the order of arrival, roll-in, roll-out and
departure events. This permutation of events is an indirect encoding as timings
of the events is also needed for a complete schedule. A complete schedule could
be extracted from this indirect encoding by e.g. scheduling all events as early
as possible while still respecting all timing constraints, and this is the method
used in this report. The main decision will be which event to choose next, but
at the same time an exact encoding based on the earliest possible time will be
used to check the schedule feasibility.

2.2 Solution Construction

The ants construct the schedule in time order, i.e. the next event is always sam-
pled from the current event’s list of potential succeeding events, called potential
successors. The first arrival is the first event in every schedule, but then an
ant may chose any of this first arrival’s potential successors as the next event
(called the chosen successor). The next event then becomes the current event
and an successor is chosen from the current events potential successors. Note
the distinction between an event’s potential successors (all events that can be
chosen next) and the events chosen successor (the next event chosen by the ant).
The chosen successors is sampled among the potential successors. The sample
probability is based on the pheromone weights of the potential successors. In
fact, the probability of sampling a successor ei is

p(ei) =
w(ei)∑

e∈P

w(e)

where P is the set of potential successors.
The main problem when constructing the solution is to ensure that the

schedule is feasible, i.e. that it respects the timing and capacity constraints from
section 1.1. This is accomplished by restricting the set of potential successors
depending on previously selected events, and also by back-tracking and making
certain orderings tabu if an infeasible schedule has been constructed. Despite
these feasibility maintaining tactics, the ant may end up in a situation where
the solution is infeasible (most notably, it may end up having no potential
successors). In this case the ant will start all over again (and we will record the
failure).

3



2.2.1 Events

There are two types of events, set events that have exact timings (arrivals and
departures) and variable events that can happened during a time interval (roll-
ins and roll-outs). The time-intervals for variable events are calculated during
the problem set-up and are based on the set events’ exact times and the timing
constraints from section 1.1. However, the intervals are not updated as the ant
progresses. This is one of the reasons we end up in infeasible situations (see
section 2.2.2).

Every event has a set of potential successors, but every event also has a set
of forced predecessors. The set of forced predecessors include events that have
to take place before the event in question is chosen. The sets are constructed
as follows:

Arrival
Predecessors (forced): the set event before the arrival and any variable event
whose latest time is before the time of this arrival but after the exact time of
the previous set event.
Successors (potential): any variable event whose interval covers some part of
the interval between the arrival and the next set event and also the next set
event.
Roll-in
Predecessors (forced): the latest set event that has a time that is earlier than
the earliest roll-in time (call it the early limit event), and any variable event
whose latest time is earlier than this events earliest time, but later than the
time of the early limit event.
Successors (potential): the first set event after the late roll-in time (call it the
late limit event), and any set event that falls within the roll-in interval. Also,
any variable event whose time interval overlaps with the interval between the
early roll-in time and the time of the late limit event.
Roll-out
Predecessors (forced): all roll-in events that are associated with the roll-out
event. The latest set event that has a time that is earlier than the earliest roll-
out time (the early limit event). Finally, any variable event whose latest time
is earlier than this events earliest time but later than the time of the early limit
event.
Successors (potential): the first set event after the late roll-out time (call it the
late limit event), and any set event that falls within the roll-out interval. Also,
any variable event whose time interval overlaps with the interval between the
early roll-out time and the time of the late limit event.
Departure
Predecessors (forced): the set event before the departure and any variable event
whose latest time is before the time of this departure but after the exact time
of the previous set event.
Successors (potential): any variable event whose interval covers some part of the
interval between the departure and the next set event and also the next set event.

Events will remain invalid choices until all forced predecessors have been se-
lected even if the current time is within a variable events time interval. Further,
whenever there is only time for forced predecessors to be chosen (e.g. because

4



there is only a short period of time between two arrivals and many roll-ins have
to happen before the next arrival) the list of potential successors will be re-
stricted to the forced events. That is, the list of potential successors is updated
as the ant progresses to support schedule feasibility.

The forced predecessors set will also be used for tabu-events to prevent over-
loading the arrival and departure yard, and for when the schedule constructed
becomes infeasible with respect to timing constraints. This is explained in more
detail in the next section.

2.2.2 Feasibility

Arrival and departure yard capacity
There can only be a certain number of trains on the arrival and departure yard
at any point in time. That is, the number of planned arrivals minus the num-
ber of planned roll-ins must always be smaller or equal to the capacity of the
arrival yard, a. Likewise, the number of planned roll-outs minus the number
of planned departures must always be smaller or equal to the capacity of the
departure yard, d. If the yard capacity is reached arrivals (roll-outs) are invalid
choices until a roll-in (departure) has been chosen. If there are only arrivals
(roll-outs) in the set of potential successors the ant has no valid choice, and will
back-track until it finds a roll-in (departure) that can happen after the current
event. The current event will then be added to the roll-in’s (departure’s) list of
forced predecessors as a tabu event. That is, the ant will now chose the current
event before the arrival (roll-out) and may thereby avoid the current overloaded
yard situation.

Infeasible exact timings
Even though the selection order of events is restricted it is possible to pick event
orders that are infeasible with respect to the timing constraints. This is an effect
of the variable events time-intervals and the fact that a certain amount of time
is needed between roll-ins and roll-outs. For example, three roll-outs a, b and
c with intervals ending late may be chosen before a roll-out e with an interval
ending early, and thereby making it impossible for e to be scheduled within its
interval when exact timings are considered. To ensure feasibility the earliest
possible time is allocated to each chosen event, and if this time is later than the
latest allowed time of the event the ant will back-track until it finds an event
that can be chosen as tabu, i.e. has no current connection to the failed event
and that can be scheduled at the current (later) time, and then add the failed
event as a forced predecessor to the event found when brack-tracking. The ant
then restarts from the event before the event found when back-tracking. In our
example above, e could be added as a forced predecessor to c ensuring that only
a and b are now scheduled before e.

Non-recovered infeasbility
Despite the two recovery actions above, the ant may still end up in a situation
where there’s no available next event, or where no feasible event is found for
tabu. For example, a late roll-in order may force a roll-out to be scheduled late.
However, a late roll-out scheduling may not be possible due to capacity and
time restrictions. The tabu search will try to find an event to schedule after the
roll-out event, but the solution to the problem is really to schedule the roll-in

5



earlier, which is not a recovery strategy that has been coded. If an ant ends
up in a situation where the feasibility can’t be recovered using the strategies
above, it will start all over again. We record the number of times an ant fails
to generate a solution.

2.3 Pheromone updating

The core of ant colony optimization is the pheromone trail the ants produce,
i.e. how the success of previous ants should affect a current ant’s solution
construction process. There are a number of different strategies. The pheromone
trail could be updated after each ant has finished finding a solution, or after
N ants have found solutions. The effect a solution should have on future ants
could depend on the solution cost, or on how good a solution is in comparison
with other solutions found.

In this report the pheromone weight of all orderings is set to 1.0 at the start
of the algorithm. Each iteration then consists of N ants, and the pheromone
weight is updated after each iteration. A the end of an iteration the N solutions
are sorted in increasing cost order, and the weights of the event orderings in the
n best solutions are proportionally increased by 1/i, where i is the order of the
solution. That is, the weight of the orderings in the best of the N solutions are
increased by 1.0, and the weight of the orderings in the ith best solution by 1/i.
We call the percentage of solutions used in the updating process, i.e. n

N , the
update percentage.

The algorithm stops when there has been m iterations without any improve-
ment of the best solution found.

2.3.1 Solution cost

The aim of the algorithm is to produce arrival and departure yard schedules
that define a classification bowl problem with a low optimal solution value. One
tactics would therefore be to find the optimal classification bowl schedule for
each solution. However, in this report a simplified cost evaluation is used. The
outbound trains are sorted according to their reversed roll-out times, and are
then allocated to classification bowl tracks in this order. When scheduling an
outbound train a before an outbound train b, some of b’s cars may need to be
mixed as they are rolled into the classification bowl before the roll-out time of
a. The track that holds a train b that required the least mixing cars is therefore
chosen for train a. In fact, we used the number of mixed cars multiplied by the
time they need to be mixed as the cost. The exact timings of pull-backs is not
considered.

3 Results

A schedule for one week was found, using real data for arrivals and departures.
An iteration size of 50 ants were used, and three different update percentages,
100%, 50% and 0%. 0% were chosen to test if the heuristic outperforms random
search. When no improvement in the cost had been found for 100 iterations the
algorithm was stopped.

The results are shown in graph 2. An updating percentage of 100% gives
the best results, and also converges the fastest. However, there are quite many

6



Graphs

Page 1

0 20 40 60 80 100120140160180200220240260280300
7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

100%

50%

0%

Figure 2: The improvement for the best solution value for different updating
percentages.

iterations without an improvements for the 0% and 50% update percentages
also before the 100 iterations that shuts down the algorithm. This indicates
that stability for 100 iterations might not be an appropriate stopping criteria.
Further, the update percentage of 0% clearly yields worse results than the other
two, indicating that the pheromone updating is indeed effective.

Figure 3 shows the number of times an ant failed to generate a feasible
solutions in each iteration for the different update percentages. As expected the
iteration number does not seem to affect the number of failures for 0%, while
failures become more common for higher iteration numbers for 100% and 50%.
This might be because the good solutions are close to the capacity limit, and
therefore ants following this pheromone trail more often suffer from capacity
shortage. This indicates that the problem with failures may aggravate if the
algorithm is run for more and more iterations to find better and better solutions.

The total running time for the algorithm for the different update percentages
were 1h56min for 100%, 3h40min for 50% and 2h18min for 0%.

4 Conclusion

An ant colony optimization algorithm for the roll-in and roll-out schedule for a
shunting yard has been developed. Ants generate solutions that are evaluated
using a simplified cost function. Feasibility is supported but not guaranteed
by using forced predecessors and including tabu event orders as needed. In
case the ants end up in an infeasible situation despite these tactics the solution
construction process is restarted for that ant.

7



Graphs

Page 1

0 18 36 54 72 90 108126144162180198216234252270288306
0

2

4

6

8

10

12

14

16

18

100%

50%

0%

Figure 3: The number of failures in each iteration for different updating per-
centages.

The results show that the ant-colony algorithm with pheromone updating
outperforms the same algorithm but without pheromones.

The algorithm would benefit from a number of improvements such as updat-
ing the time intervals of variable events as the ant progresses, and also updating
the set of forced predecessors and potential successors. This would decrease
the number of times ants fail to find a solution. It would also allow for more
advanced feasibility tactics.

When it comes to solution quality testing more pheromone updating strate-
gies, and also more iterations would be interesting. Improving the cost evalu-
ation, which is currently quite crude, would also be beneficial. Finally, track
lengths and pull-backs need to be included for a real-world schedule. If these are
included the heuristic cost evaluation without optimization becomes less proper,
and some sort of hybrid heuristic should probably be considered.

References

[1] Markus Bohlin, Sara Gestrelius, Florian Dahms, Matús Mihalák, and Holger
Flier. Optimization methods for multistage freight train formation. Trans-
portation Science, Printed online, 2015.

8


