PhD course on
Metaheuristics

Johan Hogdahl

1.5 Constraint
handling

PhD course on Metaheuristics S

1.7 Performance
Analysis of

Seminar 1: Chapter 1.5-1.9 in E.-G. Talbi (2009). Metaheuristics

1.9 Conclusions

Johan Hogdahl

October 13, 2015

PhD course on

O Utl I ne Metaheuristics

Johan Hogdahl

Chapter 1: Common Concepts for Metaheuristics
1.5 Constraint handling
1.6 Parameter tuning
1.7 Performance Analysis of Metaheuristics
1.9 Conclusions

PhD course on

15 Constralnt handllng Metaheuristics

Johan Hogdahl

1.5 Constraint
handling

» The constraints can be of any kind; nonlinear, linear,
equality or inequality
> Strategies:
> Reject strategies

Penalizing strategies

Repairing strategies

Decoding strategies

Preserving strategies

vV vy vy

PhD course on

15 Constralnt handllng Metaheuristics

Johan Hogdahl

Reject strategies

> Infeasible solutions is rejected

1.5 Constraint
handling

» A good strategy when the portion of infeasible solutions
are small compared to the hole search space

> Not so good if the search path goes through a infeasible
region
Penalizing strategies

» The approach is to add a penalizing term to the
unconstrained objective:

fo(s) = £(s) + Ac(s)

where X is a weight and c(s) is the cost of constraint
violation.

PhD course on

15 Constralnt handllng Metaheuristics

Johan Hogdahl

Penalizing strategies

» Violated constraints: count the number of violated
. 1.5 Constraint
constraints i

fo(x) = f(x) + Z wia
i=1

» Amount of infeasibility: Penalize the distance to the
feasible region

fo(x) = f(x) + zm: W,-d,-k

where d¥ is a distance metric for the constraint i and k
is usually 0 or 1.

1.5 Constraint handling

Penalizing strategies

» The strategies in the previous slide used static
penalizing factors, w;.

» Dynamic: Change the factors w; during the time. The
aim could be to allow infeasibility early in the search
and penalize more as the search progresses.

m

fo(x, 1) = F(x) + > _ wi(t)df

i=1

» Adaptive: Exploit information of the search process to
update the factors w;. For example: increasing the
factors if many infeasible solutions are generated and
decrease the factors when many feasible solutions are
generated.

PhD course on
Metaheuristics

Johan Hogdahl

1.5 Constraint
handling

1.5 Constraint handling

Repairing strategies

» Repairing strategies is heuristic algorithms to transform
an infeasible solution into a feasible one.

» They are specific to the optimization problem.

» Example: If a infeasible solution to the knapsack
problem is obtained (that is, the chosen objects does
not fit in the knapsack). A repairing strategy is to
remove the object that maximizes the ratio u;/w; until
the solution is feasible.

PhD course on
Metaheuristics

Johan Hogdahl

1.5 Constraint
handling

1.5 Constraint handling Metsherstics

Johan Hogdahl

1.5 Constraint
handling

Decoding strategies
» Indirect encoding can be used to reduce the number of
constraints and the size of the genotype
» To generate a complete solution a decoding function is
needed

» The decoding function associates a representation
r € R to a feasible solution s € S in the search space.

1.5 Constraint handling

For the decoding function the following properties must

hold:

>

For each solution r € R, corresponds a feasible solution
ses.

For each feasible solution s € S, there is a
representation r € R that corresponds to it.

The feasible solutions in S must have the same number
of corresponding solutions in R.

The computational complexity of the decoder must be
reduced.

The representation space must have the locality
property in the sense that distance between solutions in
R must be positively correlated with the distance
between feasible solutions in S.

PhD course on
Metaheuristics

Johan Hogdahl

1.5 Constraint
handling

15 Constralnt handllng PhD course on

Metaheuristics

Johan Hogdahl

1.5 Constraint
handling

Preserving strategies
> This type of strategies is problem specific

» Specific representation and operators to ensure feasible
solutions

> Is claimed to be a efficient strategy, but for some
problems it is difficult even to find a feasible initial
solution to start the search.

PhD course on

16 Parameter tunlng Metaheuristics

Johan Hogdahl

» When using metaheuristics many parameters need to be
tuned

1.6 Parameter tuning

> The parameters can be numerical coefficient and
different search components

» This allows larger flexibility and robustness

» The choice of parameters usually have huge impact in
solving efficiency

» Two different strategies; off-line parameter initialization
and online parameter tuning

1.6 Parameter tuning

Off-line parameter initialization
» Experimental design

> A simple strategy to tune the parameters is to tune
them one-by-one

» No guarantee to find optimal parameters

» Suppose n parameters with k level each = n*
combinations = many experiments is necessary!

» Statistical methods, such as Latin hypercube or
fractional design can be applied to reduce the number
of experiments. Also methods used in machine learning
(racing algorithms) can be applied.

> Meta-optimization

» The problem of finding the best parameters may be
formulated as an optimization problem

» This problem can then be solved using metaheuristic =
meta-metaheuristics

PhD course on
Metaheuristics

Johan Hogdahl

1.6 Parameter tuning

PhD course on

16 Parameter tunlng Metaheuristics

Johan Hogdahl

Off-line parameter initialization

Metaheuristic 1 at meta-level

1.6 Parameter tuning

Solution x = (parameters, decision)

Meta-level Obiective function f,,= best solution obtained by the metahauristic 2
Wetaheuristic 2 (x,) Wetaheuristic 2 (x)
Base level Solution y of the problem - Solution y of the problem
Obective function f, of the problem Objective function f,of the problem
Metaheuristic 2 at base level Metaheuristic 2 at base level
FIGURE 1.25 Meta using a

Figure: Meta-optimization

fm(x) = fo(Meta(x))

PhD course on

16 Parameter tunlng Metaheuristics

Johan Hogdahl

Online parameter tuning
» Drawbacks with off-line parameter tuning
» Computational expensive and it may be necessary to
tune the parameters for each instance
» The effectiveness of the parameters may change during
the search
» Online approaches may be classified as
» Dynamic: A random or deterministic update is carried
out without taking in account the search progress
» Adaptive update: Updates the parameters according to
the search progress. Uses the search memory. A
subclass is self-adaptive update
» Off-line and online parameter tuning will be dealt with
later in the book.

1.6 Parameter tuning

1.7 Performance Analysis of Metaheuristics

» Performance analysis of metaheuristics need to be done

on a fair basis

» The following figure illustrates how this analysis should

be carried out

Experimental design Measurement R.Rpum:?h o
8 - Report the resul
- Define the goals - Define the metrics teport the
- Select the instances [>| - Statistical analysis | | . é:‘;i:ﬁ:}";",,
- Ordinal analysis - A

FIGURE 1.26 Different steps in the e analysis of a

design, measurement, and reporting.

PhD course on
Metaheuristics

Johan Hogdahl

1.7 Performance
Analysis of
Metaheuristics

1.7 Performance Analysis

Experimental design

» Defining the goals of the computational experiments
> Selecting problem instances
» Real-life or Constructed (randomized or synthetic)
» The set of instances must be diverse in terms of size,
difficulties and structure
» Selection of parameter values
» The problem instances is divided into a calibration and
validation instances
» The parameters must be the same for all instances, they
are chosen according to the principles of section 1.6

PhD course on
Metaheuristics

Johan Hogdahl

1.7 Performance
Analysis of
Metaheuristics

1.7 Performance Analysis

Measurements
» Quality of solution
> Global optimal solution
» Lower bound
» Best known solution
» Requirements or actual implemented solution

» Computational effort

» Theoretical analysis: worst-case complexity or
average-case complexity
» Empirical analysis:
» Computation time
» Counting the number of objective function evaluations
> Stopping criteria must be chosen

PhD course on
Metaheuristics

Johan Hogdahl

1.7 Performance
Analysis of
Metaheuristics

1.7 Performance Analysis

Measurements
» Robustness

> Insensitivity against small deviations in input instances
or parameters. Lower variability of the solutions is
means better robustness.

» The parameters may be overfitted which gives poor
robustness. The metaheuristics should be able to
perform well on different instances or problems using
the same parameters

» Statistical analysis

» When the experiments have been conducted, a
statistical analysis on the performance indicators should
be carried out.

» Under normality conditions, a t-test or ANOVA test
may be carried out. Otherwise a nonparameteric
analysis is performed.

» Checking the normality conditions can be done using for
instance the Kolmogorov-Smirnov test.

PhD course on
Metaheuristics

Johan Hogdahl

1.7 Performance
Analysis of
Metaheuristics

1.7 Performance Analysis

Measurements

» Ordinal analysis

>

We want to compare n metaheuristics from m
experiments
For each method / a set of ordinal values o
(1 < k < m) are attached
The ordinal values oy denotes the rank of the
metaheuristic / from experiment k (1 < oy < n)
To obtain an aggregated rank different voting methods
can be used. For example:

» Borda count voting method

» Copeland’s method

PhD course on
Metaheuristics

Johan Hogdahl

1.7 Performance
Analysis of
Metaheuristics

1.7 Performance Analysis Metsherstics

Johan Hogdahl

Reporting

» The results must be interpreted with respect to the P
defined goals and performance measurements

Metaheuristics

» The results should be visualized to make the
interpretation of the numerical results easier.

» The metaheuristic must be well documented to be
reproduced

» If possible, the use of a common software framework is
to prefer.

1.7 Performance Analysis

(e.9- average qualiy) Perf. indicator 2
(eg., quality of solutions, robustness)
Factor 2
(e.g., population size)

Factor 1 Pert. indicator 1
' '(e.g., mutation probabity) (e.g., search time)
(a) Interaction plots (b) Trade-off scatter plots

.29 (a) Interaction plots analyze the effect of two factors (parameters, e.g., mu-
ility, population size in evolutionary algorithms) on the obtained results (e.g.,
solution quality, time). (b) Scatter plots analyze the trade-off between the different perfor-
mance indicators (e.g., quality of solutions, search time, robustness).

Performance indicator (e.g., solution quality) - Largest value (nonoutier)

- Upper quartile

Mean Confidence interval

»
Standard deviation bars

Median
-~~~ Lowerquartie
-+~~~ Smallest value (nonoutlier)
Box plots
Experiments

Different instances, parameters, and metaheuristics.

FIGURE 1.30 Some well-known visualization tools to report results: deviation bars, confi-
dence intervals.

PhD course on
Metaheuristics

Johan Hogdahl

1.5 Constraint
handling
1.6 Parameter tuning

1.7 Performance
Analysis of
Metaheuristics
1.9 Conclusions

PhD course on

19 COnCIUSIOnS Metaheuristics

Johan Hogdahl

Model of the problem

Gomplexity and difficulty of the problem
(e.g.. NP-completeness, size, structure)

1.5 Constraint
handling

Requirements O
(e.g. search time, quali

Design of a metaheuristic

the application
of solutions, robustness) 1.6 Parameter tuning

1.7 Performance
Analysis of
Metaheuristics

1.9 Conclusions

optimization algorithms

- Common concepts for metaheuristics:
- Representation
- Guiding objective function
- Constraint handiing

gl based !
- Population-based metaheuristic (see Chapter 3)

¥

Implementation of the metaheuristic

- From scratch or no reuse (nondesirable)
Coderuse

- Design and code reuse (¢.g., software
framework ParadisEO)

/\

Parameter tuning Performance evaluation
- OffHine (e.g., design of experiments, - Expsriveral dosign
‘meta-optimization) - Meast
- Online (dynamic, adapiive, TReporing
adaptive)

FIGURE 133 Guidelines for solving a given optimization problem.

	Chapter 1: Common Concepts for Metaheuristics
	1.5 Constraint handling
	1.6 Parameter tuning
	1.7 Performance Analysis of Metaheuristics
	1.9 Conclusions

