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1. Let {Xi; i = 1, 2, . . .} be independent random variables such that
E(Xi) = 0 and E(X2

i ) = σ2
i ∈ (0,∞) for i = 1, 2, . . .. Let S0 = 0, and

Sn =
∑n

i=1
Xi for n = 1, 2, . . .. Prove that {S2

n−
∑n

i=1
σ2
i ;n = 0, 1, . . .}

is a martingale with respect to the filtration {Fn;n = 0, 1, . . .}, where
F0 = {∅,Ω} and Fn = σ(X1, X2, . . . , Xn).

2. Let {Xn;n = 1, 2, . . .} and {Yn;n = 1, 2, . . .} be supermartingales with
respect to the filtration {Fn;n = 1, 2, . . .}. Let N be a stopping time
with respect to {Fn;n = 1, 2, . . .} such that YN ≤ XN .

(i) Prove that {Un;n = 1, 2, . . .}, defined by

Un = XnI{N > n}+ YnI{N ≤ n} ∀n = 1, 2, . . .

is a supermartingale with respect to {Fn;n = 1, 2, . . .}.

(ii) Prove that {Vn;n = 1, 2, . . .}, defined by

Vn = XnI{N ≥ n}+ YnI{N < n} ∀n = 1, 2, . . .

is a supermartingale with respect to {Fn;n = 1, 2, . . .}.

3. Let {Xi; i = 1, 2, . . .} be a martingale, and assume that there exists
a constant C ∈ (0,∞) such that either P (supi=1,2,...Xi ≤ C) = 1 or
P (inf i=1,2,...Xi ≥ −C) = 1. Prove that supi=1,2,...E(|Xi|) < ∞.

4. Let {Xi; i = 1, 2, . . .} be independent random variables such that
E(Xi) = 0 and E(X2

i ) = σ2
i ∈ (0,∞) for each i = 1, 2, . . ., and assume

in addition that there is a constant C ∈ (0,∞) such that |Xi| ≤ C for
each i = 1, 2, . . .. Let S0 = 0, and Sn =

∑n
i=1

Xi for n = 1, 2, . . .. Use
the result proven in Problem 1, and the optional stopping theorem for
bounded stopping times, to prove that

P ( max
i=1,...,n

|Sn| ≤ x) ≤
(x+ C)2

V (Sn)
∀x > 0.
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5. Let {Xi; i = 0, 1, . . .} be a martingale with respect to a filtration
{Fn;n = 0, 1, . . .}, and let Zn = Xn−Xn−1 for n = 1, 2, . . .. Prove that
if E(X2

0 ) < ∞ and
∑

∞

i=1
E(Z2

i ) < ∞, then {Xi; i = 0, 1, . . .} converges
a.s. and in L2 norm as n → ∞.

6. {Xi; i = 1, 2, . . .} be nonnegative random variables, and let D =
∪∞

i=1{Xi = 0}. Assume that P (D|X1, . . . , Xn) ≥ δ(x) > 0 P -a.s. on
the set {Xn ≤ x}, for each x ≥ 0. Use Lévy’s 0-1 law to prove that
P (D ∪ {limn→∞Xn = ∞}) = 1.

Hint: Show that P (D ∩ {limn→∞Xn = ∞}c) = P ({limn→∞Xn =
∞}c).

7. Let {Xi; i = 0,−1,−2, . . .} be a backwards martingale with respect
to a filtration {Fi; i = 0,−1,−2, . . .}. Prove that if E(|X0|

p) < ∞ for
some 1 < p < ∞, then {Xi; i = 0,−1,−2, . . .} converges in Lp norm
as n → −∞ (in addition to converging a.s and in L1 norm) to a limit
X−∞.

8. Let S0 = 0, and let Sn =
∑n

i=1
Xi for each n = 1, 2, . . ., where {Xi; i =

0, 1, . . .} are iid random variables such that P (X1 = 1) = P (X1 =
−1) = 1

2
. Then, {S2

n − n;n = 0, 1, 2, . . .} is a martingale with respect
to the filtration {σ(X0, . . . , Xn);n = 0, 1, . . .} (se Problem 1). Let T =
inf{n > 0; |Sn| ≥ c}, where c is a positive integer.

(i) Prove that E(T ) = c2.

(ii) Determine constants a and b such that {Wn;n = 0, 1, 2, . . .},
defined by Wn = S4

n− 6nS2
n+ bn2+ an for each n = 0, 1, 2, . . ., is

a martingale with respect to the filtration {σ(X0, . . . , Xn);n =
0, 1, . . .}, and use this to compute E(T 2).

9. Let S0 = 0, and let Sn =
∑n

i=1
Xi for each n = 1, 2, . . ., where

{Xi; i = 0, 1, . . .} are iid random variables such that P (X1 = 1) =
P (X1 = −1) = 1

2
. Let Yn = maxi=0,...,n Si for n = 0, 1, . . .. Show that

{Yi; i = 0, 1, . . .} is not a Markov chain with respect to the filtration
{σ(X0, . . . , Xn);n = 0, 1, . . .}.

Hint: {Yi; i = 0, 1, . . .} is a Markov chain with respect to the filtration
{σ(X0, . . . , Xn);n = 0, 1, . . .}, if and only if

P (Yn+1 = yn+1| ∩
n
i=1 {Xi = xi}) = P (Yn+1 = yn+1|Yn = yn),

for all x1, . . . , xn ∈ {−1, 1}, sn =
∑n

i=1
xi, and yn = maxi=0,...,n si.
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10. Two urns (urn A and urn B, respectively) contain b balls each. The
balls are either red (r balls) or green (g balls; r + g = 2b). At time
t = 1, 2, . . ., one ball is chosen at random from each urn and moved to
the other urn. Let Xt be the number of red balls in urn A immediately
after the draw at time t. Then, {Xt; t = 0, 1, . . .} is a Markov chain
(you need not prove this). Compute the transition probability, and
decide whether the states of the chain are recurrent or transient.

11. Let {Xi; i = 0, 1, . . .} be a Markov chain. Let A ∈ σ(X0, . . . , Xn) and
B ∈ σ(Xn, Xn+1, . . .). Prove that P (A ∩B|Xn) = P (A|Xn)P (B|Xn).

Hint: Assume that the chain is defined on (SZ+ , σ(C)), and use the
(generalized) Markov property.

12. Let {Xi; i = 0, 1, . . .} be a Markov chain on a finite or countably
infinite state space S. Prove that ρx,z ≥ ρx,yρy,z for any x, y, z ∈ S.

13. Let {Xi; i = 0, 1, . . .} be an irreducible Markov chain on a finite or
countably infinite state space S.

(i) Prove that if the function f : S → R satisfies

f(x) ≥
∑
y∈S

p(x, y)f(y) ∀x ∈ S, (∗)

then {f(Xn);n = 0, 1, . . .} is a supermartingale with respect to
the filtration {σ(X0, . . . , Xn);n = 0, 1, . . .}.

(ii) Prove that {Xi; i = 0, 1, . . .} is recurrent if and only if any non-
negative function f : S → R+ satisfying (∗) must be constant.

14. Let {Xi; i = 0, 1, . . .} be an irreducible and positive recurrent Markov
chain on a finite or countably infinite state space S. Let Ty = inf{n ≥
1;Xn = y}. Prove that Ex(Ty) < ∞ for any x, y ∈ S.

15. A chessboard consists of 8 × 8 = 64 squares. A knight is placed in
one of the corners. There are no other pieces on the board. At each
time t = 1, 2, . . ., the knight is moved at random to one of the squares
to which it is legally permitted to move, with equal probability for
all such squares. Compute the expected number of moves it takes for
the knight to return to its initial position. (Note that a knight is only
permitted to move by taking two steps in one direction followed by
one step in a perpendicular direction.)
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16. Let {Xi; i = 0, 1, . . .} be an irreducible and aperiodic Markov chain
on a finite state space S. Assume that {Xi; i = 0, 1, . . .} is irreducible
and aperiodic. Prove that there is an n0 ≥ 1 such that, if n ≥ n0,
pn(x, y) = Px(Xn = y) > 0 for all x, y ∈ S.

17. Let (Ω,F) be a measurable space. Let ϕ : Ω → Ω be a measurable
mapping. Let Is = {A ∈ F ;A = ϕ−1(A)} (the sets that are invariant
in the strict sense).

(i) Prove that Is is a σ-algebra.

(ii) Prove that a random variable X is Is-measurable if and only if
X = X ◦ ϕ.

18. Let (Ω,F , P ) be a probability space. Let the mapping ϕ : Ω → Ω be
measure preserving under P . Let Is = {A ∈ F ;A = ϕ−1(A)}, and let
I = {A ∈ F ;P (A∆ϕ−1(A)) = 0}, where A∆B = (A∩Bc)∪ (B ∩Ac).

(i) Let A ∈ F , and let B = ∪∞

k=0
ϕ−k(A). Prove that ϕ−1(B) ⊂ B.

(ii) Let B ∈ F be such that ϕ−1(B) ⊂ B, and let C = ∩∞

k=0
ϕ−k(B).

Prove that ϕ−1(C) = C.

(iii) Prove that A ∈ I if and only if there exists a C ∈ Is such that
P (A∆C) = 0.

19. Let (Ω,F) be a measurable space. Let ϕ : Ω → Ω be a measurable
mapping. If two probability measures P1 and P2 are preserved by ϕ,
then so is P = αP1 + (1 − α)P2, for any α ∈ [0, 1] (please check!).
Prove that ϕ is ergodic under the probability measure P if and only if
P cannot be expressed as P = αP1 + (1− α)P2, where P1 and P2 are
distinct probability measures preserved by ϕ, and α ∈ (0, 1).

20. Let (Ω,F , P ) be a probability space. Let the mapping ϕ : Ω → Ω be
measure preserving under P . Let {Xn;n = 1, 2, . . .} and X be random
variables such that Xn → X a.s., and such that E(supn=1,2,... |Xn|) <
∞. Prove that

1

n

n−1∑
k=0

Xk ◦ ϕ
k → E(X|I) P -a.s., as n → ∞.

21. Let Ω0 be the space of functions ω : [0,∞) → R, and let F0 be
the σ-algebra generated by the collection of finite-dimensional sets
{∩n

i=1{ω(ti) ∈ Ai}; 0 ≤ t1 < t2 < · · · < tn;Ai ∈ R, i = 1, 2, . . . , n;n =
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1, 2, . . .}. Moreover, let (RZ+ , σ(C)) be the space of real valued se-
quences equipped with the σ-algebra generated by the collection of
finite-dimensional sets {∩n

i=0{xi ∈ Ai};Ai ∈ R, i = 1, 2, . . . , n;n =
1, 2, . . .}. Prove that a set B ⊂ Ω0 belongs to F0 if and only if there
is a sequence 0 ≤ t1 < t2 < . . ., and a set C ∈ σ(C), such that
B = {ω ∈ Ω0; (ω(t1), ω(t2), . . .) ∈ C}.

Hint: Use Dynkin’s π − λ theorem.

22. Let {B(t); t ≥ 0} be a Brownian motion. Fix t > 0, and define ∆k,n =
B(tk2−n)−B(t(k − 1)2−n) for k = 1, . . . , 2n and n = 0, 1, . . ..

(i) Compute E((
∑

2n

k=1
∆2

k,n − t)2) for n = 0, 1, . . ..

(ii) Use the Borel-Cantelli lemma to prove that
∑

2n

k=1
∆2

k,n → t a.s.
as n → ∞.

23. Let {B(t); t ≥ 0} be a Brownian motion. Let T 0 = inf{t > 0;B(t) = 0}
and R0 = inf{t > 1;B(t) = 0}. Prove that

Px(R > 1 + t) =

∫
Py(T

0 > t)p1(x, y)dy ∀t > 0.

24. Let {B(t); t ≥ 0} be a Brownian motion. Prove that, for each s0 > 0,
with probability 1 there exists a sequence {tn;n = 1, 2, . . .} decreasing
to s0, such that each tn is a local maximum of {B(t); t ≥ 0}.

Hint: Use the fact that X(t) = B(t+ s0)−B(s0), t ≥ 0, is a Brownian
motion starting at 0,
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