Homework 11 **Homework 11.1** Let (M, g) be a 2-dimensional Riemannian manifold, and let R be the (Riemannian) curvature tensor. Moreover, let g_{ij} and R_{ijkl} denote the components of the metric and the curvature tensor in the chart (U, \vec{x}) . (a) Show that $$S = \frac{2R_{1212}}{\det(g)},$$ where S denotes the scalar curvature. (b) Show that $$R_{ijkl} = \frac{S}{2} (g_{ik}g_{jl} - g_{il}g_{jk}).$$ **Homework 11.2** The helicoid Σ is a surface in \mathbb{R}^3 given by the image of $$\vec{x}:(u,v)\to(u\cos(v),u\sin(v),cv)$$ for u > 0 and $v \in \mathbb{R}$, where c > 0 is a fixed parameter. - (a) Show that \vec{x} is injective and that \vec{x}'_u and \vec{x}'_v are linearly independent at every point in the domain of \vec{x} . - (b) Compute the mean curvature and the Gaussian curvature of Σ . - (c) The map \vec{x} defines a chart $(\vec{x}(U), \vec{x}^{-1})$ on Σ , where $$U = \{(u, v) : u > 0, v \in \mathbb{R}\}.$$ Compute the scalar curvature of Σ (with respect to the induced metric) in the chart $(\vec{x}(U), \vec{x}^{-1})$ and compare it to the Gaussian curvature.