## Homework 11

**Homework 11.1** Let (M, g) be a 2-dimensional Riemannian manifold, and let R be the (Riemannian) curvature tensor. Moreover, let  $g_{ij}$  and  $R_{ijkl}$  denote the components of the metric and the curvature tensor in the chart  $(U, \vec{x})$ .

(a) Show that

$$S = \frac{2R_{1212}}{\det(g)},$$

where S denotes the scalar curvature.

(b) Show that

$$R_{ijkl} = \frac{S}{2} (g_{ik}g_{jl} - g_{il}g_{jk}).$$

**Homework 11.2** The helicoid  $\Sigma$  is a surface in  $\mathbb{R}^3$  given by the image of

$$\vec{x}:(u,v)\to(u\cos(v),u\sin(v),cv)$$

for u > 0 and  $v \in \mathbb{R}$ , where c > 0 is a fixed parameter.

- (a) Show that  $\vec{x}$  is injective and that  $\vec{x}'_u$  and  $\vec{x}'_v$  are linearly independent at every point in the domain of  $\vec{x}$ .
- (b) Compute the mean curvature and the Gaussian curvature of  $\Sigma$ .
- (c) The map  $\vec{x}$  defines a chart  $(\vec{x}(U), \vec{x}^{-1})$  on  $\Sigma$ , where

$$U = \{(u, v) : u > 0, v \in \mathbb{R}\}.$$

Compute the scalar curvature of  $\Sigma$  (with respect to the induced metric) in the chart  $(\vec{x}(U), \vec{x}^{-1})$  and compare it to the Gaussian curvature.