Homework 12

Homework 12.1 Let $f: \Sigma \to M$ be an embedding of a manifold Σ into a Riemannian manifold (M, g) (with Levi-Civita connection $\bar{\nabla}$), and let $\mathcal{P}: \mathfrak{X}(M) \to \mathfrak{X}(M)$ denote the pointwise orthogonal projection onto $T_p\Sigma \subseteq T_pM$. Setting $\Pi = \operatorname{id} -\mathcal{P}$ (where $\operatorname{id}: \mathfrak{X}(M) \to \mathfrak{X}(M)$ denotes the identity map) one defines

$$\nabla_X Y = \mathcal{P}(\bar{\nabla}_X Y)$$
$$\alpha(X, Y) = \Pi(\bar{\nabla}_X Y)$$

for $X, Y \in \mathfrak{X}(\Sigma) \subseteq \mathfrak{X}(M)$.

- (a) Show that ∇ is an affine connection on Σ .
- (b) Show that $\alpha(X,Y) = \alpha(Y,X)$ for all $X,Y \in \mathfrak{X}(\Sigma)$. (Hint: Use the fact that $\nabla, \bar{\nabla}$ are Levi-Civita connections.)

Homework 12.2 The sphere (of radius r > 0) can be parametrized by spherical coordinates:

$$\vec{x}(\theta,\varphi) = \left(r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta\right)$$

where $\theta \in (0, \pi)$ and $\varphi \in (0, 2\pi)$.

- (a) Show that $\vec{x}'_{\theta}(\theta, \varphi)$ and $\vec{x}'_{\varphi}(\theta, \varphi)$ are linearly independent for all θ and φ in the given intervals.
- (b) Compute the induced metric with respect to the parametrization $\vec{x}(\theta, \varphi)$.
- (c) Compute the Gaussian curvature of the sphere from the definition

$$K = \frac{\det II}{\det q},$$

where II denotes the second fundamental form.