Homework 4

Homework 4.1 Let D_1 and D_2 be derivations of $C^{\infty}(M)$.

(a) Show that

$$[D_1, D_2] := D_1 \circ D_2 - D_2 \circ D_1$$

is a derivation of $C^{\infty}(M)$.

(b) Let (U, \vec{x}) be a chart on the manifold M. Show that if $X = X^i \frac{\partial}{\partial x^i}$ and $Y = Y^i \frac{\partial}{\partial x^i}$ in (U, \vec{x}) , then

$$[X,Y] = \left(X^k \frac{\partial}{\partial x^k} Y^i - Y^k \frac{\partial}{\partial x^k} X^i\right) \frac{\partial}{\partial x^i}.$$

- (c) Show that $\mathfrak{X}(M)$ is a Lie algebra with respect to the Lie bracket $[\cdot,\cdot]$. That is, show that
 - 1. [X,Y] = -[Y,X],
 - 2. [X, aY + bZ] = a[X, Y] + b[X, Z]
 - 3. [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0,

for $X, Y, Z \in \mathfrak{X}(M)$ and $a, b \in \mathbb{R}$.

Homework 4.2 Let (U, \vec{x}) and (V, \vec{y}) be charts on the manifold M such that $U \cap V \neq \emptyset$. A vector field X may be written as

$$X = X^{i} \frac{\partial}{\partial x^{i}}$$
 and $X = \tilde{X}^{i} \frac{\partial}{\partial y^{i}}$

in U and V, respectively, and it holds that $\tilde{X}^i = \frac{\partial y^i}{\partial x^k} X^k$.

(a) Let ω be a 1-form which, in local coordinates, can be written as

$$\omega = \omega_i dx^i$$
 and $\omega = \tilde{\omega}_i dy^i$.

in U and V, respectively. By using the transformation rule for vector fields above (and the fact that 1-forms are linear functionals of vector fields), show that

$$\tilde{\omega}_i = \frac{\partial x^k}{\partial y^i} \omega_k.$$

(b) Let $T \in T_1^1(TM)$ with local expressions

$$T = T_j^i \frac{\partial}{\partial x^i} \otimes dx^j$$
 and $T = \tilde{T}_j^i \frac{\partial}{\partial y^i} \otimes dy^j$

in U and V, respectively. Show that

$$\tilde{T}_j^i = \frac{\partial y^i}{\partial x^k} \frac{\partial x^l}{\partial y^j} T_l^k,$$

by using the transformation rules for vector fields and 1-forms.

(c) Show that the contractions of the two local expressions for T are equal; i.e., show that $T_i^i(p) = \tilde{T}_i^i(p)$ for all $p \in U \cap V$.

Examiner: Joakim Arnlind <joakim.arnlind@liu.se>