Homework 7

Homework 7.1 Let us define an action of \mathbb{Z} on \mathbb{R}^2 as follows. For each $n \in \mathbb{Z}$ we define $\rho_n : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$\rho_n(\alpha, t) = (\alpha + 2\pi n, (-1)^n t).$$

Furthermore, define a relation \sim on \mathbb{R}^2 by setting $(\alpha, t) \sim (\alpha', t')$ if there exists $n \in \mathbb{Z}$ such that $\rho_n(\alpha, t) = (\alpha', t')$.

- (a) Show that \sim is an equivalence relation.
- (b) Set $E = \mathbb{R}^2 / \sim$ and let $p : \mathbb{R}^2 \to E$ denote the projection onto the equivalence class in E; i.e. $p(\alpha, t) = [(\alpha, t)]$. Define the open sets

$$V_1 = (0, 2\pi) \times \mathbb{R}$$
 $V_2 = (-\pi, \pi) \times \mathbb{R}$

and let p_i denote the restriction of p to V_i . Setting $U_i = p(V_i)$, show that $\{(U_1, \kappa_1), (U_2, \kappa_2)\}$ is an atlas for E, where $\kappa_i = p_i^{-1}$. With this atlas, the set E becomes a smooth manifold.

Homework 7.2 Let $E = \mathbb{R}^2/\sim$ be as in Homework 7.1 and define the map $\pi: E \to S^1$ via

$$\pi([(\alpha, t)]) = (\cos \alpha, \sin \alpha).$$

Show that $(E, \pi, S^1, \mathbb{R})$ is a rank one vector bundle over S^1 . This is the Möbius bundle, which is a non-trivial bundle over S^1 (i.e. **not** isomorphic to $S^1 \times \mathbb{R}$).