Homework 9

Homework 9.1 Let ∇ be an affine connection on a manifold M, and let R be the corresponding curvature tensor.

- (a) Let (U, \vec{x}) and (V, \vec{y}) be charts on M such that $p \in U \cap V$. Derive a relation between the Christoffel symbols at p in the two different charts and conclude that the Christoffel symbols Γ^i_{jk} are not the components of a tensor.
- (b) Show that R is multilinear over $C^{\infty}(M)$; i.e., show that

$$R(fX+Y,Z)W = fR(X,Z)W + R(Y,Z)W$$

$$R(X,fY+Z)W = R(X,Z)W + fR(X,Y)W$$

$$R(X,Y)(fZ+W) = fR(X,Y)Z + R(X,Y)W.$$

for $X, Y, Z, W \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$.

Homework 9.2 Let M be a manifold and let ∇ be a connection on M. A map $\alpha: \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ is called a $C^{\infty}(M)$ -bilinear map if

$$\alpha(fX + Y, Z) = f\alpha(X, Z) + \alpha(Y, Z)$$

$$\alpha(X, fY + Z) = f\alpha(X, Y) + \alpha(X, Z)$$

for all $X, Y, Z \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$.

(a) Let $\alpha: \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ be a $C^{\infty}(M)$ -bilinear map. Show that $\bar{\nabla}$

$$\bar{\nabla}_X Y = \nabla_X Y + \alpha(X, Y)$$

is a connection on M.

(b) Show that if ∇ and $\bar{\nabla}$ are connections on M then

$$\alpha(X,Y) = \bar{\nabla}_X Y - \nabla_X Y$$

is a $C^{\infty}(M)$ -bilinear map.

(c) Let $M = \mathbb{R}^2 \setminus \{(0,0)\}$, and let ∇ denote the connection on M defined by

$$\nabla_X Y = X^i \left(\frac{\partial}{\partial x^i} Y^k \right) \frac{\partial}{\partial x^k}$$

in the global chart $(\mathbb{R}^2\setminus\{(0,0)\}, \mathrm{id})$, where we write $x^1=x$ and $x^2=y$. Show that for $X=X^i\frac{\partial}{\partial x^i}$ and $Y=Y^i\frac{\partial}{\partial x^i}$, the map defined as

$$\bar{\nabla}_X Y = \nabla_X Y + \frac{x^i}{x^2 + y^2} \left(X^1 Y^1 + X^2 Y^2 \right) \frac{\partial}{\partial x^i}$$

is a connection on M and compute its Christoffel symbols Γ^i_{jk} as well as the curvature components R^i_{jkl} , for each $i,j,k\in\{1,2\}$.

Examiner: Joakim Arnlind <joakim.arnlind@liu.se>